Skip to main content

Part of the book series: Methods in Molecular Biology ((MIMB,volume 162))

  • 666 Accesses

Abstract

The charge density of nucleic acids is uniform and constant for nucleic acid molecules of varying length. Therefore, they typically migrate at the same velocity in response to an electrical potential in free solution. Capillary electrophoretic (CE) separation of nucleic acid species requires addition of a sieving matrix to the background electrolyte to retard the analytes in proportion to their molecular size (1). This can be achieved by casting a crosslinked gel in the capillary, or by incorporating a linear gel material or polymer in the background electrolyte. Both of these approaches have been applied successfully to the separation of nucleic acid species ranging from short, single-stranded oligonucleotides to dsDNA of several kilobase lengths. The selection of the appropriate sieving matrix will depend upon the size of the molecules that are to be separated, the resolution required, and the capabilities of the analytical instrumentation. This chapter will review the various sieving matrices which have been employed for CE separation of nucleic acids, identify the appropriate matrix for specific applications, and provide practical suggestions for preparation and use of sieving media for CE.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Issaq H. J. (2001) Parameters affecting capillary electrophoretic separation of DNA, in Capillary Electrophoresis of Nucleic Acids, Vol. 1 (Mitchelson K. R. and Cheng J., eds.), Humana Press, Totowa, NJ, pp. 189–199.

    Google Scholar 

  2. Guttman A., Cohen A. S., Heiger D. N., and Karger B. L. (1990) Analytical and micropreparative ultrahigh resolution of oligonucleotides by polyacrylamide gel high-performance capillary electrophoresis.Anal. Chem. 62, 137–143.

    Article  CAS  Google Scholar 

  3. Cordier Y., Roch O., Cordier P., and Bischof R. (1994) Capillary gel electrophoresis of oligonucleotides: prediction of migration times using base-specific migration coefficients. J. Chromatogr. A 680, 479–489.

    Article  CAS  Google Scholar 

  4. Slater G. W., Mayer P., and Grossman P. D. (1995) Diffusion, Joule heating, and band broadening in capillary gel electrophoresis of DNA. Electrophoresis 16, 75–80.

    Article  PubMed  CAS  Google Scholar 

  5. Scholsky K. M., Mao D. T., and Turner K. A., (1992) Synthetic oligonucleotide analysis using substituted acrylamide capillary electrophesis. ACS Polymer Preprints 1146–1147.

    Google Scholar 

  6. Dolnik V., and Novotny M. V. (1993) Separation of amino acid homopolymers by capillary gel electrophoresis. Anal. Chem. 65, 563–567.

    Article  PubMed  CAS  Google Scholar 

  7. Karger B. L. and Cohen A. S. (1989) Capillary gel electrophoresis columns, US patent 4,865,707.

    Google Scholar 

  8. Drossman H., Luckey J. A., Kostichka A. J., D’Cunha J., and Smith L. M. (1990) Highspeed separation of DNA sequencing reactions by capillary electrophoresis. Anal. Chem. 62, 900–903.

    Article  PubMed  CAS  Google Scholar 

  9. Holloway R. R. (1992) Capillary electrophoresis columns and method of preparing the same. US patent 5,167,783.

    Google Scholar 

  10. Schomburg G. M., Lux J. A., and Yin F.-F. (1992) Production of polyacrylamide gel filled capillaries for capillary gel electrophoresis. US Patent 5,141,612.

    Google Scholar 

  11. Novotny M. V., Dolnik V., and Cobb K. A. (1990) Capillary Gels formed by spatially progressive polymerization using migrating initiator. US patent 5,080,771.

    Google Scholar 

  12. Fishel L. A., Rosenberg B., and Juckett D. A (1996) Method of preparing gel containing capillaries. US patent 5,522,974.

    Google Scholar 

  13. Zhu M., Hansen D. L., Burd S., and Gannon F. (1989) Factors affecting free zone electrophoresis and isoelectric focusing in capillary electrophoresis. J. Chromatogr. 480, 311–319.

    Article  CAS  Google Scholar 

  14. Ogston A.G. (1958) The spaces in a uniform random suspension of fibers. Trans. Faraday Soc. 54, 1754–1757.

    Article  Google Scholar 

  15. Lerman L. S. and Frisch H. L. (1982) Why does the electrophoretic mobility of DNA in gels vary with the length of the molecule? Biopolymers 21, 995–997.

    Article  PubMed  CAS  Google Scholar 

  16. Grossman P. D. and Soane D. S. (1991) Capillary electrophoresis of DNA in entangled polymer solutions. J. Chromatogr. 559, 257–266.

    Article  PubMed  CAS  Google Scholar 

  17. Barron A. E., Soane D. S., and Blanch H. W. (1993) Capillary electrophoresis of DNA in uncross-linked polymer solutions. J. Chromatogr. A 652, 3–16.

    Article  PubMed  CAS  Google Scholar 

  18. Barron A. E., Blanch H. W., and Soane D. S. (1994) A transient entanglement coupling mechanism for DNA separation by capillary electrophoresis in ultradilute polymer solutions. Electrophoresis 15, 597–615.

    Article  PubMed  CAS  Google Scholar 

  19. Hjertén S. (1985) High-performance electrophoresis: elimination of electroendosmosis and solute adsorption. J. Chromatogr. 347, 191–198.

    Article  Google Scholar 

  20. Heiger D., Cohen A. S., and Karger B. L. (1990) Separation of DNA restriction fragments by high performance capillary electrophoresis with low and zero crosslinked polyacrylamide using continuous and pulsed electric fields. J. Chromatogr. 516, 33–48.

    Article  PubMed  CAS  Google Scholar 

  21. Ruiz-Martinez M., Berka J., Belenkii A., Foret F., Miller A. W., and Karger B. L. (1993) DNA sequencing by capillary electrophoresis with replaceable linear polyacrylamide and laser-induced fluorescence. Anal. Chem. 65, 2851–2858.

    Article  PubMed  CAS  Google Scholar 

  22. Grossman P. D. (1994) Electrophoretic separation of DNA sequencing extension products using low-viscosity entangled polymer networks. J. Chromatogr. A 663, 219–227.

    Article  CAS  Google Scholar 

  23. Best N., Arriaga E., Chen D. Y., and Dovichi N. J. (1994) Separation of fragments up to 570-bases in length by use of 6% T non-cross-linked polyacrylamide for DNA sequencing in capillary electrophoresis. Anal. Chem. 66, 4063–4067.

    Article  PubMed  CAS  Google Scholar 

  24. Hjertén S. (1967) Free zone electrophoresis. Chromatogr. Rev. 9, 122–219.

    Article  PubMed  Google Scholar 

  25. Bello M. S, de Besi P., Rezzonico R., Righetti P. G., and Casiraghi E. (1994) Electroosmosis of polymer solutions in fused silica capillaries. Electrophoresis 15, 623–626.

    Article  PubMed  CAS  Google Scholar 

  26. Barron A. E., Sunada W. M., and Blanch H. W. (1995) The use of coated and uncoated capillaries for the electrophoretic separation of DNA in dilute polymer solutions. Electrophoresis 16, 64–74.

    Article  PubMed  CAS  Google Scholar 

  27. Barron A. E., Sunada W. M., and Blanch H. W. (1996) The effects of polymer properties on DNA separations by capillary electrophoresis in uncross-linked polymer solutions. Electrophoresis 17, 744–757.

    Article  PubMed  CAS  Google Scholar 

  28. Isenberg A. R, McCord B. R., Koons B. W., Budowle B., and Allen R. O. (1996) DNA typing of a polymerase chain reaction amplified D1S80/amelogenin multiplex using capillary electrophoresis and a mixed entangled polymer matrix. Electrophoresis 17, 1505–1511.

    Article  PubMed  CAS  Google Scholar 

  29. Khan K., vanSchepdael A., and Hoogmartens J. (1996) Capillary electrophoresis of oligonucleotides using a replaceable sieving buffer with low viscosity-grade hydroxyethyl cellulose. J. Chromatogr. A 742, 267–274.

    Article  CAS  Google Scholar 

  30. Bashkin J., Marsh M., Barker D., and Johnston R. (1996). DNA sequencing by capillary electrophoresis with a hydroxyethylcellulose sieving buffer. App. Theo. Elect. 6, 23–28.

    CAS  Google Scholar 

  31. Chang H.-T. and Yeung E. S. (1995). Poly(ethyleneoxide) for high-resolution and highspeed separation of DNA by capillary electrophoresis. J. Chromatogr.B 669, 113–123.

    Article  CAS  Google Scholar 

  32. Fung E. N. and Yeung E. S. (1995) High-speed DNA sequencing by using mixed poly(ethyene oxide) solutions in uncoated capillary columns. Anal. Chem. 67, 1913–1919.

    Article  CAS  Google Scholar 

  33. Menchen S., Johnson B., Winnik M. A., and Xu B. (1996) Flowable networks as DNA sequencing media in capillary columns. Electrophoresis 17, 1451–1459.

    Article  PubMed  CAS  Google Scholar 

  34. Bocek P. and Chrambach A. (1991) Capillary electrophoresis of DNA in agarose solutions at 40°C. Electrophoresis 12, 1059–1061.

    Article  PubMed  CAS  Google Scholar 

  35. Bocek P. and Chrambach A. (1992) Capillary electrophoresis in agarose solutions: Extension of size separations to DNA of 12-kb in length. Electrophoresis 13, 31–34.

    Article  PubMed  CAS  Google Scholar 

  36. Palm A. K. (2001) Capillary electrophoresis of DNA fragments with replaceable lowgelling agarose gels, in Capillary Electrophoresis of Nucleic Acids, Vol. 1 (Mitchelson K. R. and Cheng J., eds.), Humana Press, Totowa, NJ, pp. 279–290.

    Google Scholar 

  37. Belder D. and Schomburg G. (1992) Modification of silica surfaces for CZE by adsorption of non-ionic hydrophilic polymers or use of radial electric fields. J. High Res. Chromatogr. 15, 686–693.

    Article  CAS  Google Scholar 

  38. Kleemiss M. H., Gilges M., and Schomburg G. (1993) Capillary electrophoresis of DNA restriction fragments with solutions of entangled polymers. Electrophoresis 14, 515–522.

    Article  PubMed  CAS  Google Scholar 

  39. Chiari M., Micheletti C., Nesi M., Fazio M., and Righetti P. G. (1994) Towards new formulations for polyacrylamide matrices: N-acryloylaminoethoxyethanol, a novel monomer combining high hydrophilicity with extreme hydrolytic stability. Electrophoresis 15, 177–186.

    Article  PubMed  CAS  Google Scholar 

  40. Chiari M., Nesi M., and Righetti P. G. (1994) Capillary zone electrophoresis of DNA fragments in a novel polymer network: Poly(N-acryloylaminoethoxyethanol). Electrophoresis 15, 616–622.

    Article  PubMed  CAS  Google Scholar 

  41. Righetti P. G. and Gelfi C. (1997) Recent advances in capillary electrophoresis of DNA fragments and PCR products in poly(N-substituted acrylamides). Anal. Biochem. 244, 195–207.

    Article  PubMed  CAS  Google Scholar 

  42. Siles B. A., Collier G. B., Reeder D. J., and May W. E. (1996) The use of a new gel matrix for the separation of DNA fragments: a comparison study between slab gel electrophoresis and capillary electrophoresis. App. Theo. Elect. 6, 15–22.

    CAS  Google Scholar 

  43. Wu C., Liu T., and Chu B. (1997) Characterization of the PEO-PPO-PEO triblock copolymer and its application as a separation medium in capillary electrophoresis. Macromolecules 30, 4574–4583.

    Article  CAS  Google Scholar 

  44. Chu B., Liu T., Wu C.-H., and Liang D. (2001) DNA capillary electrophoresis using block copolymer as a new separation medium, in Capillary Electrophoresis of Nucleic Acids, Vol. 1 (Mitchelson K. R. and Cheng J., eds.), Humana Press, Totowa, NJ, pp. 225–238.

    Google Scholar 

  45. Talmadge K., Zhu M., Olech L., and Siebert C. (1996) Oligonucleotide analysis by capillary polymer sieving electrophoresis using acryloylaminoethoxyethanol-coated capillaries. J. Chromatogr. 744, 347–354.

    Article  CAS  Google Scholar 

  46. Talmadge K., Tan A. K., and Zhu M. (1997) DNA fragment analysis by capillary polymer sieving using poly(acryloylaminoethoxyethanol)-coated capillaries. J. Chromatogr. 781, 335–345.

    Article  CAS  Google Scholar 

  47. Inazuka M., Wenz H.-M., Sakabe M., Tahira T., and Hayashi K. (1997) A streamlined mutation detection system: multicolor post-PCR fluorescence labeling and single-strand conformational polymorphism analysis by capillary electrophoresis. Genome Res. 7, 1094–1103.

    PubMed  CAS  Google Scholar 

  48. Atha D., Wenz H.-M., Morehead H., and Tian J. (1998) Detection of p53 point mutations by single strand conformational polymorphism: analysis by capillary electrophore-sis. Electrophoresis 19, 172–179.

    Article  PubMed  CAS  Google Scholar 

  49. Wenz H.-M., Robertson J. M., Menchen S., Oaks F., Demorest D., Scheibler D., Rosenblum B. B., Wike C., Gilbert D. A., and Efcavitch J. W. (1998) High-precision genotyping by denaturing capillary electrophoresis. Genome Res. 8, 69–80.

    PubMed  CAS  Google Scholar 

  50. Lazaruk K., Walsh P. S., Oaks F., Gilbert D., Rosenblum B. B., Menchen S., Scheibler D., Wenz H.-M., Holt C., and Wallin J. (1998) Genotyping of forensic short tandem repeat (STR) systems based on sizing precision in a capillary electrophoresis instrument. Electrophoresis 19, 86–93.

    Article  PubMed  CAS  Google Scholar 

  51. Rosenblum B. B., Oaks F., Menchen S., and Johnson B. (1997) Improved single-strand DNA sizing accuracy in capillary electrophoresis. Nucleic Acids Res. 25, 3925–3929.

    Article  PubMed  CAS  Google Scholar 

  52. Madabhushi R. S. (1998) Separation of 4-color DNA sequencing extension products in noncovalently coated capillaries using low viscosity polymer solutions. Electrophoresis 19, 224–230.

    Article  PubMed  CAS  Google Scholar 

  53. Madabhushi R. S. (2001) DNA sequencing in noncovalently coated capillaries using low viscosity polymer solutions, in Capillary Electrophoresis of Nucleic Acids, Vol. 2 (Mitchelson K. R. and Cheng J., eds.), Humana Press, Totowa, NJ, pp. 309–315.

    Chapter  Google Scholar 

  54. Wenz H.-M., Dailey D., and Johnson M. D. (2001) Development of a high-throughput capillary electrophoresis protocol for DNA fragment analysis, in Capillary Electrophoresis of Nucleic Acids, Vol. 2 (Mitchelson K. R. and Cheng J., eds.), Humana Press, Totowa, NJ, pp. 3–17.

    Chapter  Google Scholar 

  55. Heller C. (2001) Influence of polymer concentration and polymer composition on capillary electrophoresis of DNA, in Capillary Electrophoresis of Nucleic Acids, Vol. 1 (Mitchelson K. R. and Cheng J., eds.), Humana Press, Totowa, NJ, pp. 111–123.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Humana Press Inc.

About this protocol

Cite this protocol

Wehr, T., Zhu, M., Mao, D.T. (2001). Sieving Matrix Selection. In: Mitchelson, K.R., Cheng, J. (eds) Capillary Electrophoresis of Nucleic Acids. Methods in Molecular Biology, vol 162. Humana Press. https://doi.org/10.1385/1-59259-055-1:167

Download citation

  • DOI: https://doi.org/10.1385/1-59259-055-1:167

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-779-3

  • Online ISBN: 978-1-59259-055-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics