Skip to main content

Sindbis Virus-Based Vectors for the Study of Class I Antigen Presentation In Vitro and In Vivo

  • Protocol
Antigen Processing and Presentation Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 156))

  • 742 Accesses

Abstract

Alphavirus-based vectors have received considerable attention in the fields of antigen (Ag) presentation, epitope mapping, vaccinology, and gene therapy (1-12), because of their relative ease of manipulation, purification to high titers, and ability to express large amounts of protein (13). Several members of the Alphavirus genus, including Sindbis virus (SIN), Semliki Forest virus, and Venezuelan equine encephalitis virus, have been modified genetically for use as viral expression vectors for foreign Ags (1, 3, 8, 13-17). SIN virions are comprised of an icosahedral nucleocapsid surrounded by a plasma-membrane- derived envelope containing two viral glycoproteins, E1 and E2 (18). The nucleocapsid contains a single stranded, positive (+) sense RNA gene of approx 11,700 nucleotides, which is capped and polyadenylated, and associated with 240 copies of the viral capsid protein.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hahn, C. S., Hahn, Y. S., Brachiale, T. J., and Rice, C. M. (1992) Infectious Sindbis virus transient expression vectors for studying antigen processing and presentation. Proc. Natl. Acad. Sci. USA 89, 2679–2683.

    Article  CAS  PubMed  Google Scholar 

  2. Chen, J.-P., Miller, D., Katow, S., and Frey, T.K. (1995) Expression of the rubella virus structural proteins by an infectious Sindbis virus vector. Arch. Virol. 140, 2075–2084.

    Article  CAS  PubMed  Google Scholar 

  3. Davis, N. L., Brown, K. W., and Johnston, R. E. (1996) Viral vaccine vector that expresses foreign genes in lymph nodes and protects against mucosal challenge. J. Virol. 70, 3781–3787.

    CAS  PubMed  Google Scholar 

  4. Zhou, X., Berglund, P., Zhao, H., Liljestrom, P., and Jondal, M. (1995) Generation of cytotoxic and humoral immune responses by nonreplicative recombinant Semliki Forest virus. Proc. Natl. Acad. Sci. USA 92, 3009–3013.

    Article  CAS  PubMed  Google Scholar 

  5. Johanning, F. W., Conry, R. M., LoBuglio, A. F., Wright, M., Sumerel, L. A., Pike, M. J., and Curiel, D. T. (1995) Sindbis virus mRNA polynucleotide vector achieves prolonged and high level heterologous gene expression in vivo. Nucleic Acids Res. 23, 1495–1501.

    Article  CAS  PubMed  Google Scholar 

  6. Hart, M.K., Pratt, W., Panelo, F., Tammariello, R., and Dertzbaugh, M. (1997) Venezuelan equine encephalitis virus vaccines induce mucosal IgA responses and protection from airborne infection in BALB/c, but not C3H/HeN mice. Vaccine 15, 363–369.

    Article  CAS  PubMed  Google Scholar 

  7. Pugachev, K. V., Mason, P. W., Shope, R. E., and Frey, T. K. (1995) Double-subgenomic Sindbis virus recombinants expressing immunogenic proteins of Japanese Encephalitis virus induce significant protection in mice against lethal JEV infection. Virology 212, 587–594.

    Article  CAS  PubMed  Google Scholar 

  8. Caley, I. J., Betts, M. R., Irlbeck, D. M., Davis, N. L., Swanstrom, R., Frelinger, J. A., and Johnston, R. E. (1997) Humoral, mucosal, and cellular immunity in response to a human immunodeficiency virus type 1 immunogen expressed by a Venezuelan equine encephalitis virus vaccine vector. J. Virol. 71, 3031–3038.

    CAS  PubMed  Google Scholar 

  9. Tsuji, M., Bergmann, C. C., Takita-Sonoda, Y., Murata, K.-I., Rodrigues, E. G., Nussenzweig, R. S., and Zavala, F. (1998) Sindbis viruses expressing foreign epitopes are efficient vectors for inducing protective CD8+T cell responses. J. Virol. 72, 6907–6910.

    CAS  PubMed  Google Scholar 

  10. Dubensky, T. W.,Jr., Driver, D. A., Polo, J. M., Belli, B. A., Latham, E. M., Ibanez, C. E., et al. (1996) Sindbis virus DNA-based expression vectors: utility for in vitro and in vivo gene transfer. J. Virol. 70, 508–519.

    CAS  PubMed  Google Scholar 

  11. Hariharan, M. J., Driver, D. A., Townsend, K., Brumm, D., Polo, J. M., Belli, B. A., et al. (1998) DNA immunization against herpes simplex virus: enhanced efficacy using a Sindbis virus-based vector. J. Virol. 72, 950–958.

    CAS  PubMed  Google Scholar 

  12. Driver, D. A., Polo, J. M., Belli, B. A., Banks, T. A., Hariharan, M., and Dubensky, T. W.,Jr. (1998) Plasmid DNA-based alphavirus expression vectors for nucleic acid immunization. Curr. Res. Mol. Ther. 1, 510–517.

    CAS  Google Scholar 

  13. Xiong, C., Levis, R., Shen, P., Schlesinger, S., Rice, C. M., and Huang, H. V. (1989) Sindbis virus: an efficient, broad host range vector for gene expression in animal cells. Science 243, 1188–1191.

    Article  CAS  PubMed  Google Scholar 

  14. Liljestrom, P. and Garoff, H. (1991) New generation of animal cell expression vectors based on the Semliki Forest virus replicon. Bio/Technology 9, 1356–1361.

    Article  CAS  PubMed  Google Scholar 

  15. Pugachev, K. V., Mason, P. W., and Frey, T. K. (1995) Sindbis vectors suppress secretion of subviral particles of Japanese Encephalitis Virus from mammalian cells infected with SIN-JEV recombinants. Virology 209, 155–166.

    Article  CAS  PubMed  Google Scholar 

  16. Bredenbeek, P. J. and Rice, C. M., (1992) Animal RNA virus expression systems. Semin. Virol. 3, 297–310.

    CAS  Google Scholar 

  17. Bredenbeek, P. J., Frolov, I., Rice, C. M., and Schlesinger, S. (1993) Sindbis virus expression vectors: packaging of RNA replicons by using defective helper RNAs. J. Virol. 67, 6439–6446.

    CAS  PubMed  Google Scholar 

  18. Strauss, J. H. and Strauss, E. G. (1994) Alphaviruses: gene expression, replication, and evolution. Microbiol. Rev. 58, 491–562.

    CAS  PubMed  Google Scholar 

  19. Rice, C. M., Levis, R., Strauss, J. H., and Huang, H. V. (1987) Production of infectious RNA transcripts from Sindbis virus cDNA clones: mapping of lethal mutations, rescue of a temperature sensitive marker, and in vitro mutagenesis to generate defined mutants. J. Virol. 61, 3809–3819.

    CAS  PubMed  Google Scholar 

  20. Frolov, I., Frolova, E., and Schlesinger, S. (1997) Sindbis virus replicons and Sindbis virus: assembly of chimeras and of particles deficient in virus RNA. J. Virol. 71, 2819–2829.

    CAS  PubMed  Google Scholar 

  21. Pushko, P., Parker, M., Ludwig, G. V., Davis, N. L., Johnston, R. E., and Smith, J. F. (1997) Replicon-helper systems from attenuated Venezuelan equine encephalitis virus: expression of heterologous genes in vitro and immunization against heterologous pathogens in vivo. Virology 239 389–401.

    Article  CAS  PubMed  Google Scholar 

  22. Polo, J. M., Belli, B. A., Driver, D. A., Frolov, I., Sherrill, S., Hariharan, M. J., et al. (1999) Stable alphavirus packaging cell lines for Sindbis virus and Semliki Forest virus derived vectors. Proc. Natl. Acad. Sci. USA 96, 4598–4603.

    Article  CAS  PubMed  Google Scholar 

  23. Hahn, Y. S., Hahn, C. S., Braciale, V. L., Braciale, T. J., and Rice, C. M. (1992) CD8+T cell recognition of an endogenously processed epitope is regulated primarily by residues within the epitope. J. Exp. Med. 176, 1335–1341.

    Article  CAS  PubMed  Google Scholar 

  24. Bergmann, C., Dimacali, E., Stohl, S., Wei, W., Lai, M. M. C., Tahara, S., and Marten, N. (1998) Variability of persisting MHV RNA sequences constituting immune and replication-relevant domain. Virology 244, 563–572.

    Article  CAS  PubMed  Google Scholar 

  25. Coppola, M.A., and Green, W.R. (1994) Cytotoxic T lymphocyte responses to the envelope proteins of endogenous ecotropic and mink cytopathic focus-forming murine leukemia viruses in H-2b mice. Virology 202, 500–505.

    Article  CAS  PubMed  Google Scholar 

  26. York, I.A. and Rock, K.L. (1996) Antigen processing and presentation by the class I major histocompatibility complex. Annu. Rev. Immunol. 14, 369–396.

    Article  CAS  PubMed  Google Scholar 

  27. Sambrook, J., Fritsch, E.F., and Maniatis, T. (1989) Molecular Cloning: A Laboratory Manual, 2nd ed. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.

    Google Scholar 

  28. Hahn, Y. S., Guanzon, A., Rice, C. M., and Hahn, C. S. (1999) Class IMHC molecule-mediated inhibition of Sindbis virus replication. J. Immunol. 162, 69–77.

    CAS  PubMed  Google Scholar 

  29. Bergmann, C. C., Yao, Q., Ho, S., and Buckwold, S. (1996) Flanking residues alter antigenicity and immunogenicity of multi-unit CTL epitopes. J. Immunol. 157, 3242–3249.

    CAS  PubMed  Google Scholar 

  30. Villacres, M. C., Zuo, J., and Bergmann, C. C. (2000) Maintenance of CD8 T-cell memory following infection with recombinant sindbis and vaccinia viruses. Virology 270, 54–64.

    Article  CAS  PubMed  Google Scholar 

  31. Mullbacher, A., and R.V. Blanden. (1978) Murine cytotoxic T-cell response to alphavirus is associated mainly with H-2Dk. Immunogenetics 7, 551–561.

    Article  CAS  PubMed  Google Scholar 

  32. Linn, M. L., Mateo, L., Gardner, J., and Suhrbier, A. (1998) Alphavirus-specific cytoxic T-lymphocytes recognize a cross-reactive epitope from the capsid protein and can eliminate virus from persistently infected macrophages. J. Virol. 72, 5146–5153.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Humana Press Inc.

About this protocol

Cite this protocol

Polo, J.M., Bergmann, C.C. (2000). Sindbis Virus-Based Vectors for the Study of Class I Antigen Presentation In Vitro and In Vivo. In: Solheim, J.C. (eds) Antigen Processing and Presentation Protocols. Methods in Molecular Biology, vol 156. Humana Press. https://doi.org/10.1385/1-59259-062-4:111

Download citation

  • DOI: https://doi.org/10.1385/1-59259-062-4:111

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-745-8

  • Online ISBN: 978-1-59259-062-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics