Skip to main content

Virus Replication

  • Protocol
Rotaviruses

Part of the book series: Methods in Molecular Medicineā„¢ ((MIMM,volume 34))

Abstract

The effort to understand the molecular biology of rotaviruses (RVs) has led to the development of procedures that can be used to study the replication and transcription of the RV genome, the assembly and structure of the rotavirion, and the structure and function of RV proteins. Because it is not possible to provide a detailed description of all the techniques developed, this chapter stresses only those that have broad application, or which represent important new technical advances. In particular, this chapter emphasizes procedures used to prepare large amounts of purified triple-(TLP), double-(DLP), and single-layered (core) RV particles; to synthesize viral RNAs in vitro, through the transcriptase and replicase activities associated with RV particles; to evaluate the RNA-binding activity of RV proteins; and to assemble core-like and virus-like particles (CLPs and VLPs, respectively) via the expression of RV recombinant proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Graham, D. Y. and Estes, M. K. (1980) Proteolytic enhancement of rotavirus infectivity: biological mechanisms. Virology 101, 432ā€“439.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  2. Espejo, R. T., Lopez, S., and Arias, C. (1981) Structural polypeptides of simian rotavirus SA11 and the effect of trypsin, J. Virol. 37, 156ā€“160.

    CASĀ  PubMedĀ  Google ScholarĀ 

  3. Cohen, J., Laporte, J., Charpilienne, A., and Scherrer, R. (1979) Activation of rotavirus RNA polymerase by calcium chelation. Arch. Virol. 60, 177ā€“186.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  4. Shirley, J. A., Beards, G. M., Thouless, M. E., and Flewett, T. H. (1981) The influence of divalent cations on the stability of human rotavirus. Arch. Virol. 67, 1ā€“9.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  5. Bican, P., Cohen, J., Charpilienne A., and Scherrer, R. (1982) Purification and characterization of bovine rotavirus cores. J. Virol. 43, 1113ā€“1117.

    CASĀ  PubMedĀ  Google ScholarĀ 

  6. Almeida, J. D., Bradburne, A. F., and Wreghitt, T. G. (1979) The effect of sodium thiocyanate on virus structure. J. Med. Virol. 4, 269ā€“277.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  7. Valenzuela, S., Pizarro, J., Sandino, A. M., Vasquez, M., Fernandez, J., Hernandez, O., Patton, J., and Spencer, E. (1991) Photoaffinity labeling of rotavirus VP1 with 8-azido-ATP: Identification of the viral RNA polymerase. J. Virol. 65, 3964ā€“3967.

    CASĀ  PubMedĀ  Google ScholarĀ 

  8. Patton, J. T., Jones, M. T., Kalbach, A. N., He, Y.-W., and Xiaobo, J. (1997) Rotavirus RNA polymerase requires the core shell protein to synthesise the double-stranded RNA genome. J. Virol. 71, 9618ā€“9626.

    CASĀ  PubMedĀ  Google ScholarĀ 

  9. Cohen, J. (1977) Ribonucleic acid polymerase activity associated with purified calf rotavirus. J. Gen. Virol. 36, 395ā€“402.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  10. Chen, D. Y., Zeng, C. Q.-Y., Wentz, M. J., Gorziglia, M., Estes, M. K., and Ramig, R. F. (1994) Template dependent, in vitro replication of rotavirus RNA. J. Virol. 68, 7030ā€“7039.

    CASĀ  PubMedĀ  Google ScholarĀ 

  11. Mason, B. B., Graham, D. Y., and Estes, M. K. (1980) In vitro transcription and translation of rotavirus SA11 gene products. J. Virol. 33, 1111ā€“1121.

    CASĀ  PubMedĀ  Google ScholarĀ 

  12. Sandini, A. M., Jashes, M., Faundez, G., and Spencer, E. (1986) Role of the inner protein capsid on in vitro human rotavirus transcription. J. Virol. 60, 797ā€“802.

    Google ScholarĀ 

  13. Pizarro, J. L., Sandino, A. M., Pizarro, J. M., Fernandez, J., and Spencer, E. (1991) Characterization of rotavirus guanylyltransferase activity associated with polypeptide VP3. J. Gen. Virol. 72, 325ā€“332.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  14. Liu, M., Mattion, N. M., and Estes, M. K. (1992) Rotavirus VP3 expressed in insect cells possesses guanylyltransferase activity. Virology 188, 77ā€“84.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  15. Desselberger, U. and McCrae, M. A. (1994) The rotavirus genome. Curr. Top. Microbiol. Immunol. 185, 31ā€“66.

    CASĀ  PubMedĀ  Google ScholarĀ 

  16. Patton, J. T., Wentz, M., Xiaobo, J., and Ramig, R. F. (1996) Cis-acting signals that promote genome replication in rotavirus mRNAs. J. Virol. 70, 3961ā€“3971.

    CASĀ  PubMedĀ  Google ScholarĀ 

  17. Wentz, M. J., Patton, J. T., and Ramig, R. F. (1996) The 3ā€²-terminal consensus sequence of rotavirus mRNA is the minimal promoter of negative-strand RNA synthesis. J. Virol. 70, 7833ā€“7841.

    CASĀ  PubMedĀ  Google ScholarĀ 

  18. Chen, D. and Patton, J. T. (1998) Rotavirus RNA replication requires a single-stranded 3ā€²-terminus for efficient minus strand synthesis. J. Virol. 72, 7387ā€“7396.

    CASĀ  PubMedĀ  Google ScholarĀ 

  19. Patton, J. T. (1996) Rotavirus VP1 alone specifically binds to the 3ā€²-end of viral mRNA but the interaction is not sufficient to initiate minus-strand synthesis. J. Virol. 70, 7940ā€“7947.

    CASĀ  PubMedĀ  Google ScholarĀ 

  20. LabbĆ©, M., Baudoux, P., Charpilienne, A., Poncet, D., and Cohen, J. (1994) Identification of the nucleic acid binding domain of the rotavirus VP2 protein. J. Gen. Virol. 75, 3423ā€“3430.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  21. Patton, J. T. and Chen, D. (1999) RNA binding and capping activities of proteins in rotavirus open cores. J. Virol. 73, 1382ā€“1391.

    CASĀ  PubMedĀ  Google ScholarĀ 

  22. Shuman, S. (1995) Capping enzyme in eukariotic mRNA synthesis. Prog. Nucleic Acids Res. Mol. Biol. 50, 101ā€“129.

    ArticleĀ  CASĀ  Google ScholarĀ 

  23. Patton, J. T. (1996) Structure and function of the rotavirus RNA-binding proteins. J. Gen. Virol. 76, 2633ā€“2644.

    ArticleĀ  Google ScholarĀ 

  24. Brottier, P., Nandi, P., Bremont, M., and Cohen, J. (1992) Bovine rotavirus segment 5 protein expressed in the baculovirus system interacts with zinc and RNA. J. Gen. Virol. 73, 1931ā€“1938.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  25. Kattoura, M., Clapp, L. L., and Patton, J. T. (1992) The rotavirus nonstructural protein, NS35, is a nonspecific RNA-binding protein. Virology 191, 698ā€“708.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  26. Poncet, D., Aponte, C., and Cohen, J. (1994) Four nucleotides are the minimal requirement for RNA recognition by rotavirus non-structural protein NSP3. EMBO J. 13, 4165ā€“4173.

    CASĀ  PubMedĀ  Google ScholarĀ 

  27. Boyle, J. F. and Holmes, K. V. (1986) RNA-binding proteins of bovine rotavirus. J. Virol. 58, 561ā€“568.

    CASĀ  PubMedĀ  Google ScholarĀ 

  28. Hua, J., Chen, X., and Patton, J. T. (1994) Deletion mapping of the rotavirus metalloprotein NS53 (NSP1): The conserved cysteine-rich region is essential for virus-specific RNA binding. J. Virol. 68, 3990ā€“4000.

    CASĀ  PubMedĀ  Google ScholarĀ 

  29. Patton, J. T. and Hua, J. (1995) Using the RNA-capture assay to assess the RNA-binding activity of viral proteins, in Methods in Molecular Genetics, vol. 7: Molecular Virology Techniques (Adolph, A. W., ed.), Academic Press, New York, p. 373ā€“387.

    Google ScholarĀ 

  30. Poncet, D., Aponte, C., and Cohen, J. (1996) Structure and function of rotavirus nonstructural protein NSP3. Arch. Virol. 12, Suppl. S29ā€“S35.

    Google ScholarĀ 

  31. Zeng, Q.-Y., Wentz, M. J., Estes, M. K., and Ramig, R. F. (1996) Characterization and replicase activity of double-layered and single-layered rotavirus-like particles expressed from baculovirus recombinants. J. Virol. 70, 2736ā€“2742.

    CASĀ  PubMedĀ  Google ScholarĀ 

  32. Crawford, S. E., LabbĆ©, M., Cohen, J., Burroughs, M. H., Zhou, Y. J., and Estes, M. K. (1994) Characterisation of virus-like particles produced by the expression of rotavirus capsid proteins in insect cells. J. Virol. 68, 5945ā€“5952.

    CASĀ  PubMedĀ  Google ScholarĀ 

  33. LabbĆ©, M., Charpilienne, A., Crawford, S. E., Estes, M. K., and Cohen, J. (1991) Expression of rotavirus VP2 produces empty corelike particles. J. Virol. 65, 2946ā€“2952.

    PubMedĀ  Google ScholarĀ 

  34. Lawton, J. A., Zeng, C. Q., Mukherjee, S. K., Cohen, J., Estes, M. K., and Prasad, B. V. (1997) Three-dimentional structural analysis of recombinant rotavirus-like particles with intact and amino-terminal-deleted VP2: implications for the architecture of the VP2 capsid layer. J. Virol. 71, 7353ā€“7360.

    CASĀ  PubMedĀ  Google ScholarĀ 

  35. Zeng, C. Q.-Y., Estes, M. K., Charpilienne, A., and Cohen, J. (1998) The N terminus of rotavirus VP2 is necessary for encapsidation of VP1 and VP3. J. Virol. 72, 201ā€“208.

    CASĀ  PubMedĀ  Google ScholarĀ 

  36. Fuerst, T. R., Niles, E. G., Studier, F. W., and Moss, B. (1986) Eukaryotic transient-expression system based on recombinant vaccinia virus that synthesizes bacteriophage T7 RNA polymerase. Proc. Natl. Acad. Sci. USA 83, 8122ā€“8126.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  37. Zeng, C.Q.-Y., LabbĆ©, M., Cohen, J., Prasad, B. V. V., Chen, D., Ramig, R. F., and Estes, M. K. (1994) Characterization of rotavirus VP2 particles. Virology 201, 55ā€“65.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  38. Cochran, M. A., Puckett, C., and Moss, B. (1985) In vitro mutagenesis of the promoter region for a vaccinia virus gene: evidence for tandem early and later regulatory signals. J. Virol. 54, 30ā€“37.

    CASĀ  PubMedĀ  Google ScholarĀ 

  39. Patton, J. T. and Stacey-Phipps, S. (1986) Electrophoretic separation of the plus and minus-strands of rotavirus SA11 double-stranded RNAs, J. Virol. Methods 13, 185ā€“19

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  40. Chen, D., Gombold, J. L., and Ramig, R. F. (1990) Intracellular RNA synthesis directed by temperature-sensitive mutants of simian rotavirus SA11. Virology 178, 143ā€“151.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  41. Poncet, D., Aponte, C., and Cohen, J. (1993) Rotavirus protein NSP3 (NS34) is bound to the 3ā€² end consensus sequence of viral mRNAs in infected cells. J. Virol. 67, 3159ā€“3165.

    CASĀ  PubMedĀ  Google ScholarĀ 

  42. Patton, J. T., Hua, J., and Mansell, E. A. (1993) Location of interchain disulfide bonds in VP5Ɨ* and VP8Ɨ* trypsin cleavage fragments of the rhesus rotavirus spike protein VP4. J. Virol. 67, 4848ā€“4855.

    CASĀ  PubMedĀ  Google ScholarĀ 

  43. Estes, M. K., Crawford, S. E., Penaranda, M. E., Petrie, B. L., Burns, J. W., Chan, W.-K., et al. (1987) Synthesis and immunogenicity of the rotavirus major capsid antigen using a baculovirus expression system. J. Virol. 61, 1488ā€“1494.

    CASĀ  PubMedĀ  Google ScholarĀ 

  44. Clapp, L. L. and Patton, J. T. (1991) Rotavirus morphogenesis: domains in the major inner capsid protein essential for binding to single-shelled particles and for trimerization. Virology 180, 697ā€“708.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2000 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Patton, J.T., Chizhikov, V., Taraporewala, Z., Chen, D. (2000). Virus Replication. In: Gray, J., Desselberger, U. (eds) Rotaviruses. Methods in Molecular Medicineā„¢, vol 34. Humana Press. https://doi.org/10.1385/1-59259-078-0:33

Download citation

  • DOI: https://doi.org/10.1385/1-59259-078-0:33

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-736-6

  • Online ISBN: 978-1-59259-078-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics