Skip to main content

Enzymatic Transformations in Supercritical Fluids

  • Protocol
Enzymes in Nonaqueous Solvents

Part of the book series: Methods in Biotechnology ((MIBT,volume 15))

  • 870 Accesses

Abstract

Water is the most common solvent for biochemical reactions both in vivo and in vitro in enzymological experiments. Unfortunately, synthetic reactions that can be carried out by reversing the hydrolytic action of certain enzymes as well as other biotransformations (e.g., oxidation) are difficult or even impossible to operate in water. Oxidation reactions are limited by the poor solubility of oxygen in water, and syntheses are impeded by high water activity. In order to shift the thermodynamic equilibrium in favor of the synthesis, it is necessary to use nonaqueous solvents. However, the use of solvents can be problematic because of toxicity, flammability, and increasing environmental concerns. As a result, supercritical fluids (SCFs) have attracted much attention in recent years as an alternative to organic solvents for carrying out enzymatic reactions. Up to now, SCFs have only been used in large-scale industrial processing to extract plant materials (e.g., coffee, hops). Nevertheless, interest in the use of SCF as a solvent for biocatalysis is growing rapidly (see reviews in refs. 1-9).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aaltonen O. and Rantakylä, M. (1991) Biocatalysis in supercritical CO2. CHEMTECH 240–248.

    Google Scholar 

  2. Perrut, M. (1994) Enzymatic reactions and cell behaviour in supercritical fluids. Chem. Biochem. Eng. Quart. 8(1), 25–30.

    Google Scholar 

  3. Russell, A. J., Beckman, E. J., and Chaudhary, A. K. (1994) Studying enzyme activity in supercritical fluids. CHEMTECH 24, 33–37.

    CAS  Google Scholar 

  4. Jarzebski, A. B. and Malinowski, J. J. (1995) Potentials and prospects for application of supercritical fluid technology in bioprocessing. Process Biochem. 30, 343–352.

    CAS  Google Scholar 

  5. Kamat, S., Beckman, E. J., and Russell, A. J. (1995) Enzyme activity in supercritical fluids, Crit. Rev. Biotechnol. 15, 41–71.

    Article  CAS  Google Scholar 

  6. Ballesteros, A., Bornscheuer, U., Capewell, A., Combes, D., Condoret, J. S., Koenig, K., et al. (1995) Enzymatic reaction in non conventional media. Biocatal. Biotransform. 13, 1–42.

    Article  CAS  Google Scholar 

  7. Nakamura, K. (1996) Enzymic synthesis in supercritical fluids. Supercrit. Fluid Technol. Oil Lipid.

    Google Scholar 

  8. Cernia, E. and Palocci, C. (1997) Lipases in supercritical fluids. Methods Enzymol. 286 (Lipases, Part B), 495–508.

    Article  CAS  Google Scholar 

  9. Ikushima, Y. (1997) Supercritical fluids: an interesting medium for chemical and biochemical processes. Adv. Colloid Interf. Sci. 71-72, 259–280.

    CAS  Google Scholar 

  10. King, M. B. and Bott, T. R. (1983)Extraction of Natural Products Using Near Critical Solvents. Blackie Academic and Professional/Chapman & Hall, London.

    Google Scholar 

  11. Erickson, J. C., Schyns, P., and Cooney, C. L. (1990) Effect of pressure on an enzymatic reaction in a supercritical fluid. AIChE J. 36, 299–301.

    Article  CAS  Google Scholar 

  12. van Eijs, A. M. M., de Jong, J. P. J., Doddema, H. J., and Lindeboom, D. R. (1988) Enzymatic transesterification in supercritical carbon dioxide. Proceedings of the International Symposium on Supercritical Fluids (Nice, France) (Perrut, M., ed.), pp. 933–942.

    Google Scholar 

  13. Ely, J. F., Haynes, W. M., and Bain, B. C. (1989) Isochoric measurements on CO2 and on (0.982 CO2+0.018 N2) from 250 to 330 K at pressures to 35 MPA. J. Chem. Thermodynam. 21, 879–894.

    Article  CAS  Google Scholar 

  14. Wiebe, R. and Gaddy, V. L. (1941) Vapour phase composition of carbon dioxide-water mixtures at various temperature and at pressures to 700 atmosphere. J. Am. Chem. Soc. 63, 475–477.

    Article  CAS  Google Scholar 

  15. Chrastil, J. (1982) Solubility of solids and liquids in supercritical gases. J. Phys. Chem. 86, 3016–3021.

    Article  CAS  Google Scholar 

  16. Giddings, J. C., Meyers, M. N., McLaren, L., and Keller, R. A. (1968) High pressure gas chromatography of nonvolatile species. Science 162, 67.

    Article  CAS  Google Scholar 

  17. King, J. W. and Friedrich, J. P. (1990) Quantitive correlations between solute molecular-structure and solubility in supercritical fluids. J. Chromatogr. Sci. 517, 449–458.

    Article  CAS  Google Scholar 

  18. Peng, D. Y. and Robinson, D. B. (1976) A new two constant equation of state. Eng. Chem. Fundam. 15, 59.

    Article  CAS  Google Scholar 

  19. Valle, J. M. and Aguilera J. M. (1988) An improved equation for predicting the solubility of vegetable oils in supercritical CO2. Eng. Chem. Res. 27, 1551–1553.

    Article  Google Scholar 

  20. Castillo, E., Marty, A., Combes, D., and Condoret, J. S. (1994) Polar substrates for enzymatic reactions in supercritical CO2. How to overcome the solubility limitation. Biotechnol. Lett. 16, 169–174.

    Article  CAS  Google Scholar 

  21. Hammond, D. A., Karel, M., Klibanov, A. M., and Krukonis, V. J. (1985) Enzymatic reactions in supercritical gases. Appl. Biochem. Biotechnol.11, 393–400.

    Article  CAS  Google Scholar 

  22. Miller, D. A., Blanch, H. W., and Prausnitz, J. M. (1991) Enzyme-catalyzed interesterification of triglycerides in supercritical carbon dioxide. Ind. Eng. Chem. Res. 30, 939–946.

    Article  CAS  Google Scholar 

  23. Randolph, T. W., Blanch, H. W., and Prausnitz, J. M. (1988) Enzyme-catalyzed oxidation of cholesterol in supercritical carbon dioxide. AIChE J. 34, 1354–1360.

    Article  CAS  Google Scholar 

  24. Marty, A., Combes, D., and Condoret, J. S. (1994) Continuous reaction-separation process for enzymatic esterification in supercritical carbon dioxide. Biotechnol. Bioeng. 43, 497–504.

    Article  CAS  Google Scholar 

  25. Marty, A., Chulalaksananukul, W., Condoret, J. S., Willemot, R. M., and Durand, G. (1990) Comparison of lipase-catalyzed esterification in supercritical carbon dioxide and in n-hexane. Biotechnol. Lett. 12, 11–16.

    Article  CAS  Google Scholar 

  26. Dumont, T., Barth, D., Corbier, C., Branlant, G., and Perrut, M. (1992) Enzymatic reaction kinetic: comparison in an organic solvent and in supercritical carbon dioxide. Biotechnol. Bioeng. 40, 329–333.

    Article  CAS  Google Scholar 

  27. Marty, A., Dossat, V., and Condoret, J. S. (1997) Continuous operation of lipase-catalyzed reactions in non-aqueous solvents: influence of the production of hydrophilic compounds. Biotechnol. Bioeng. 56, 232–237.

    Article  CAS  Google Scholar 

  28. Halling, P. (1994) Thermodynamic predictions for biocatalysis in non-conventional media: theory, tests and recommendations for experimental design and analysis. Enzyme Microb. Technol. 16, 178–206.

    Article  CAS  Google Scholar 

  29. Colombier, S., Tweddell, R., Condoret, J. S., and Marty, A. (1998) Water activity control: a way to improve the efficiency of a continuous lipase esterification. Biotechnol. Bioeng. 60, 362–368.

    Article  Google Scholar 

  30. Marty, A., Chulalaksananukul, W., Willemot, W., and Condoret, J. S. (1992) Kinetics of lipase-catalyzed esterification in supercritical CO2. Biotechnol. Bioeng. 39, 273–280.

    Article  CAS  Google Scholar 

  31. Condoret, J. S., Vankan, S., Joulia, X., and Marty, A. (1997) Prediction of water adsorption curves for heterogeneous biocatalysis in organic and supercritical solvents. Chem. Eng. Sci. 52, 213–220.

    Article  CAS  Google Scholar 

  32. Wong, J. M. and Johnston, K. P. (1986) Solubilization of biomolecules in carbon dioxide based supercritical fluids. Biotechnol. Process. 2, 29–38.

    Article  CAS  Google Scholar 

  33. Marty, A., Manon, S., Ju, D. P., Combes, D., and Condoret, J. S. (1995) The enzymatic reaction-fractionation process in supercritical carbon dioxide. Enzyme Engineering XII, Vol. 750, (Dordick, J. S. and Russell, A. J., eds.), New York Academy of Sciences, New York, pp. 408–411.

    Google Scholar 

  34. Doddema, H. J., Janssens, R. J. J, de Jong, J. P. J., van der Lugt, J. P., and Oostrom, H. H. M. (1990) Enzymatic reactions in supercritical carbon dioxide and integrated product-recovery, 5th European Congress on Biotechnology, Copenhagen (Christiansen, et al., eds.), pp. 239–242.

    Google Scholar 

  35. Adshiri, T., Akiya, H., Chin, L. C., Arai, K., and Fujimoto, K. (1992) Lipase-catalyzed interesterification of triglycerides with supercritical carbon dioxide. J. Chem. Eng. Jpn. 25, 104–105.

    Article  Google Scholar 

  36. Taniguchi, M., Kamihira, M., and Kobayashi, T. (1987) Effect of treatment with supercritical carbon dioxide on enzymatic activity. Agric. Biol. Chem. 51(2), 593–594.

    CAS  Google Scholar 

  37. Cernia, E., Palocci, C., Gasparrin, F., Misiti, D., and Fagano, N. (1994) Enantioselectivity and reactivity of immobilized lipase in supercritical carbon dioxide. J. Mol. Catal. 89, L11–L18.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Humana Press Inc.

About this protocol

Cite this protocol

Marty, A., Condoret, JS. (2001). Enzymatic Transformations in Supercritical Fluids. In: Vulfson, E.N., Halling, P.J., Holland, H.L. (eds) Enzymes in Nonaqueous Solvents. Methods in Biotechnology, vol 15. Humana Press. https://doi.org/10.1385/1-59259-112-4:587

Download citation

  • DOI: https://doi.org/10.1385/1-59259-112-4:587

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-929-2

  • Online ISBN: 978-1-59259-112-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics