Skip to main content

Using Retroviral Vectors to Express SV40 Tumor Antigens

  • Protocol
SV40 Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 165))

  • 510 Accesses

Abstract

Retroviral vectors for polyomavirus tumor antigens, including SV40 large and small tumor antigens (SVT), have been extensively utilized to study the function of these proteins in a wide range of cell types. Properties of retroviruses that make them particularly efficient vectors include the capacity for dual gene expression in a single vector under the control of a single promotor or separate promotors, and efficient, stable integration of viral genes into the target cell genome (1). In addition, most cell types have receptors for retroviral infection and vectors may be engineered to further enhance their broad host range (2). A common application well suited to retroviral vectors is the generation of immortalized cell lines from different tissues following expression of SVT. Conditional, temperature-sensitive mutants of SVT have been used extensively for this purpose. Studies utilizing retroviral vectors to express SVT in a variety of cell types are represented by the following selected references (3-20).>

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Coffin, J. M., (1990) Retroviridae and their replication, in Virology (Fields, B. N. and Knipe, D. M., eds.), Raven, New York, pp. 1437–1500, ch. 51.

    Google Scholar 

  2. Cepko, C. (1996) Transducing genes using retrovirus vectors, in Current Protocols in Molecular Biology (Ausubel, F. E.A., ed.), Wiley, New York, pp. 9.9.1–9.14.6.

    Google Scholar 

  3. Bikel, I., Montano, X., Agha, M. E., Brown, M., McCormack, M., Boltax, J., et al. (1987) SV40 small t antigen enhances the transformation activity of limiting concentrations of SV40 large T antigen. Cell 48, 321–330.

    Article  CAS  PubMed  Google Scholar 

  4. Brown, M., McCormack, M., Zinn, K. G., Farrell, M. P., Bikel, I., and Livingston, D. M. (1986) A recombinant murine retrovirus for simian virus 40 large T cDNA transforms mouse fibroblasts to anchorage-independent growth. J. Virol. 60, 290–293.

    CAS  PubMed  Google Scholar 

  5. Burns, J. S., Lemoine, L., Lemoine, N. R., Williams, E. D., and Wynford-Thomas, D. (1989) Thyroid epithelial cell transformation by a retroviral vector expressing SV40 large T. Br. J. Cancer 59, 755–760.

    Article  CAS  PubMed  Google Scholar 

  6. Caleb, B. L., Hardenbrook, M., Cherington, V., and Castellot, J. J., Jr. (1996) Isolation of vascular smooth muscle cell cultures with altered responsiveness to the antiproliferative effect of heparin. J. Cell Physiol. 167, 185–195.

    Article  CAS  PubMed  Google Scholar 

  7. Helftenbein, G., Wiehle, R. D., and Beato, M. (1991) Establishment of a temperature-dependent cell line from rat endometrium by retroviral infection. Eur. J. Cell Biol. 56, 49–57.

    CAS  PubMed  Google Scholar 

  8. Jat, P. S., Cepko, C. L., Mulligan, R. C., and Sharp, P. A.(1986) Recombinant retroviruses encoding simian virus 40 large T antigen and polyomavirus large and middle T antigens. Mol. Cell. Biol. 6, 1204–1217.

    CAS  PubMed  Google Scholar 

  9. Jat, P. S. and Sharp, P. A. (1986) Large T antigens of simian virus 40 and polyomavirus efficiently establish primary fibroblasts. J. Virol. 59, 746–750.

    CAS  PubMed  Google Scholar 

  10. Jefferson, D. M., Valentich, J. D., Marini, F. C., Grubman, S. A., Iannuzzi, M. C., Dorkin, H. L., et al. (1990) Expression of normal and cystic fibrosis phenotypes by continuous airway epithelial cell lines. Am. J. Physiol. 259 (6 Pt 1), L496–L505.

    Google Scholar 

  11. Kriegler, M., Perez, C. F., Hardy, C., and Botchan, M. (1984) Transformation mediated by the SV40 T antigens: separation of the overlapping SV40 early genes with a retroviral vector. Cell 38, 483–491.

    Article  CAS  PubMed  Google Scholar 

  12. Kaung, H. C., Wang, C., Xu, S., Jacobberger, J. W., and Chen, W. (1996) Rat islet cell lines produced by retroviral transduction of SV40 T antigen. In Vitro Cell Dev. Biol. Anim. 32, 185–188.

    Article  CAS  PubMed  Google Scholar 

  13. Larsson, L., Timms, E., Blight, K., Restall, D. E., Jat, P. S., and Fisher, A. G. (1991) Characterization of murine thymic stromal-cell lines immortalized by temperature-sensitive simian virus 40 large T or adenovirus 5 E1a. Dev. Immunol. 1, 279–293.

    Article  CAS  PubMed  Google Scholar 

  14. Ogawa, Y., Ohno, N., Ito, M., Iizuka, M., Kobayashi, S., and Sudo, T. (1991) Generation of functional murine macrophage lines employing a helper-free and replication-defective SV40-retrovirus: cytokine-dependent growth. Cell Struct. Funct. 16, 467–474.

    Article  CAS  PubMed  Google Scholar 

  15. Levine, R. A., Hopman, T., Guo, L., Chang, M. J., and Johnson, N. (1998) Induction of retinoblastoma gene expression during terminal growth arrest of a condi SV40 Tumor Antigens 149 tionally immortalized fetal rat lung epithelial cell line and during fetal lung maturation. Exp. Cell Res. 239, 264–276.

    Article  CAS  PubMed  Google Scholar 

  16. Weggen, S., Bayer, T. A., Koch, A., Salewski, H., Scheidtmann, K. H., Pietsch, T., et al. (1997) Characterization of neural cell lines derived from SV40 large T-induced primitive neuroectodermal tumors. Brain Pathol. 7, 731–739.

    Article  CAS  PubMed  Google Scholar 

  17. Wang, S., Beattie, G. M., Hayek, A., and Levine, F. (1996) Development of a VSV-G protein pseudotyped retroviral vector system expressing dominant oncogenes from a lacO-modified inducible LTR promoter. Gene 182, 145–150.

    Article  CAS  PubMed  Google Scholar 

  18. Watt, S. M., Thomas, J. A., Murdoch, S. J., Kearney, L., Chang, S. E., and Bartek, J. (1991) Human thymic epithelial cells are frequently transformed by retroviral vectors encoding simian virus 40. Cell. Immunol. 138, 456–472.

    Article  CAS  PubMed  Google Scholar 

  19. Wegner, C. C., Cherington, V., Clemens, J. W., Jacobs, A. L., Julian, J., Surveyor, G. A., et al. (1996) Production and characterization of WEG-1, an epidermal growth factor/transforming growth factor-alpha-responsive mouse uterine epithelial cell line. Endocrinology 137, 175–184.

    Article  CAS  PubMed  Google Scholar 

  20. Cherington, V., Brown, M., Paucha, E., St. Louis, J., Spiegelman, B. M., and Roberts, T. M. (1988) Separation of simian virus 40 large-T-antigen-transforming and origin-binding functions from the ability to block differentiation. Mol. Cell. Biol. 8, 1380–1384.

    CAS  PubMed  Google Scholar 

  21. Matsubara, T., Beeman, R. W., Shike, H., Besansky, N. J., Mukabayire, O., Higgs, S., et al. (1996) Pantropic retroviral vectors integrate and express in cells of the malaria mosquito, Anopheles gambiae. Proc. Natl. Acad. Sci. USA 93, 6181–6185.

    Article  CAS  PubMed  Google Scholar 

  22. Gurney, E. G., Tamowski, S., and Deppert, W. (1986) Antigenic binding sites of monoclonal antibodies specific for simian virus 40 large T antigen. J. Virol. 57, 1168–1172.

    CAS  PubMed  Google Scholar 

  23. Phillips, B. and Rundell, K. (1988) Failure of simian virus 40 small t antigen to disorganize actin cables in nonpermissive cell lines. J. Virol. 62, 768–775.

    CAS  PubMed  Google Scholar 

  24. Srinivasan, A., Peden, K.W., and Pipas, J. M. (1989) The large tumor antigen of simian virus 40 encodes at least two distinct transforming functions. J. Virol. 63, 5459–5463.

    CAS  PubMed  Google Scholar 

  25. Symonds, H. S., McCarthy, S. A., Chen, J., Pipas, J. M., and Van Dyke, T. (1993) Use of transgenic mice reveals cell-specific transformation by a simian virus 40 T-antigen amino-terminal mutant. Mol. Cell. Biol. 13, 3255–3265.

    CAS  PubMed  Google Scholar 

  26. Higgins, C., Chatterjee, S., and Cherington, V. (1996) The block of adipocyte differentiation by a C-terminally truncated, but not by full-length, simian virus 40 large tumor antigen is dependent on an intact retinoblastoma susceptibility protein family binding domain. J. Virol. 70, 745–752.

    CAS  PubMed  Google Scholar 

  27. Burns, J. C., Friedman, T., Driever, W., Burrascano, M., and Yee, J. K. (1993) Vesicular stomatitis virus G glycoprotein pseudotyped retroviral vectors: Concentration to a very high titer and efficient gene transfer into mammalian and nonmammalian cells. Proc. Natl. Acad. Sci. USA 90, 8033–8037.

    Article  CAS  PubMed  Google Scholar 

  28. Yee, J. K., Friedmann, T., and Burns, J. C. (1994) Generation of high-titer pseudotyped retroviral vectors with very broad host range. Methods Cell Biol. 43 Pt A, 99–112.

    Article  CAS  PubMed  Google Scholar 

  29. Naviaux, R. E., Costanzi, E., Haas, M., and Verma, I. M. (1996) The pCL vector system: Rapid production of helper-free, high titer recombinant retroviruses. J. Virol. 70, 5701–5705.

    CAS  PubMed  Google Scholar 

  30. Chen, J., Tobin, G. J., Pipas, J.M., and Van Dyke, T. (1992) T-antigen mutant activities in vivo: roles of p53 and pRB binding in tumorigenesis of the choroid plexus. Oncogene 7, 1167–1175.

    CAS  PubMed  Google Scholar 

  31. Dranoff, G., Jaffee, E., Lazenby, A., Golumbek, P., Levitsky, H., Brose, K., et al. (1993) Vaccination with irradiated tumor cells engineered to secrete murine granulocyte-macrophage colony-stimulating factor stimulates potent, specific, and longlasting anti-tumor immunity. Proc. Natl. Acad. Sci. USA 90, 3539–3543.

    Article  CAS  PubMed  Google Scholar 

  32. Miller, A. D. and Rosman, G. J. (1989) Improved retroviral vectors for gene transfer and expression. BioTechniques 7, 980–990.

    CAS  PubMed  Google Scholar 

  33. Markowitz, D., Goff, S., and Bank, A. (1988) A safe packaging line for gene transfer: separating viral genes on two different plasmids. J. Virol. 62, 1120–1124.

    CAS  PubMed  Google Scholar 

  34. Markowitz, D., Goff, S., and Bank, A. (1988) Construction and use of a safe and efficient amphotropic packaging cell line. Virology 167, 400–406.

    CAS  PubMed  Google Scholar 

  35. Miller, A. D. and Chen, F. (1996) Retrovirus packaging cells based upon 10A1 murine leukemia virus for production of vectors that use multiple receptors for cell entry. J. Virol. 70, 5564–5571.

    CAS  PubMed  Google Scholar 

  36. Pear, W., Nolan, G., Scott, M., and Baltimore, D. (1993) Production of high-titer helper-free retroviruses by transient transfection. Proc. Natl. Acad. Sci. USA 90, 8392–8396.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Cherington, V., Higgins, C. (2001). Using Retroviral Vectors to Express SV40 Tumor Antigens. In: Raptis, L. (eds) SV40 Protocols. Methods in Molecular Biology™, vol 165. Humana Press. https://doi.org/10.1385/1-59259-117-5:129

Download citation

  • DOI: https://doi.org/10.1385/1-59259-117-5:129

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-653-6

  • Online ISBN: 978-1-59259-117-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics