Skip to main content

Dynamic AFM of Patch Clamped Membranes

  • Protocol
Ion Channel Localization

Part of the book series: Methods in Pharmacology and Toxicology ((MIPT))

  • 568 Accesses

Abstract

The investigative power of a single technique can be significantly enhanced by the simultaneous addition of a second, independent technique. This is especially true for the combination of atomic force microscopy (AFM) and patch-clamp recording for the study of biological systems because each technique has the ability to observe dynamic molecular events under physiological conditions. Merging these approaches will have direct application in examining structures in which mechanical and electrical parameters are paramount; for example, the study of mechanosensitive ion channels (MSCs), flexoelectricity (mechanical/electrical coupling), and outer-hair-cell electromotility. In addition, subtle advantages of this arrangement can be beneficial in studying related problems of membrane mechanics and voltage- and ligand-sensitive ion-channel physiology. Correlating mechanical and electrical interactions on a molecular level has only been attempted in a few instances. This chapter introduces our attempt to create a setup of standard components that allows concurrent use of both methods without limiting the practical use of either technique individually. We discuss experimental results exploiting this setup and consider the possibilities for further applications. We will begin with a review of some history of use of AFM and patch-clamp (summarized in Table 1)

Table 1
Table 2

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hille, B. (1992) Ionic Channels of Excitable Membranes. Sinauer Associates Inc., Sunderland, MA.

    Google Scholar 

  2. Horn, R. (1991) Diffusion of nystatin in plasma membrane is inhibited by a glass-membrane seal [published erratum appears in Biophys. J. 60(4), 985]. Biophys. J. 60, 329–333.

    Article  PubMed  CAS  Google Scholar 

  3. Fernandez, J. M., Neher, E., and Gomperts, B. D. (1984) Capacitance measurements reveal stepwise fusion events in degranulating mast cells. Nature 312,5993), 453–455.

    Article  PubMed  CAS  Google Scholar 

  4. Joshi, C. and Fernandez, J. M. (1989) Capacitance measurements: an analysis of the phase detector technique used to study exocytosis and endocytosis. Biophys. J. 56, 1153–1162.

    Article  Google Scholar 

  5. Dilger, J. P., Brett, R. S., Poppers, D. M., and Liu, Y. (1991) The temperature dependence of some kinetic and conductance properties of acetylcholine receptor channels. Biochim. Biophys. Acta 1063, 253–258.

    Article  PubMed  CAS  Google Scholar 

  6. Sachs, F. (1999) Practical limits on the maximal speed of solution exchange for patch-clamp experiments. Biophys J. 77, 682–690.

    Article  PubMed  CAS  Google Scholar 

  7. Besch, S. D. and Sachs, F. (2000) A Compact, High Speed, Air Pressure Servo. In press.

    Google Scholar 

  8. Mcbride, D. W. and Hamill, O. P. (1995) A fast pressure-clamp technique for studying mechanogated channels, in Single-Channel Recording (Sakmann, B. and Neher, E., eds.), Plenum, New York, pp. 329–340.

    Google Scholar 

  9. Martinac, B. (1993) Mechanosensitive ion channels: biophysics and physiology. Thermodynamics of Cell Surface Receptors (Jackson, M., ed.), CRC Press, Boca Raton, FL, pp. 327–351.

    Google Scholar 

  10. Sachs, F. (1992) Stretch sensitive ion channels: an update, in Sensory Transduction (Corey, D. P. and Roper, S. D., eds.), Rockefeller University Press, Society General Physiology, NY, pp. 241–260.

    Google Scholar 

  11. Sackin, H. (1995) Stretch activated ion channels. Kidney Int. 48, 1134–1147.

    Article  PubMed  CAS  Google Scholar 

  12. Sachs, F. and Morris, C. (1998) Mechanosensitive ion channels in non specialized cells, in Reviews of Physiology and Biochemistry and Pharmacology (Blaustein, M. P., et al., eds.), Springer, Berlin, pp. 1–78.

    Google Scholar 

  13. Sokabe, M. and Sachs, F. (1992) Towards a molecular mechanism of activation in mechanosensitive ion channels, in Advances in Comparative and Environmental Physiology, vol. 10 (Ito, F., ed.), Springer-Verlag, Berlin, pp. 55–77.

    Google Scholar 

  14. Sukharev, S., Sigurdson, W., Kung, C., and Sachs, F. (1999) Energetic and spatial parameters for gating of the bacterial large conductance mechanosensitive channel, MscL. J. Gen. Physiol. 113, 525–539.

    Article  PubMed  CAS  Google Scholar 

  15. Hamill, O. P., Marty, A., Neher, E., Sakmann, B., and Sigworth, F. J. (1981) Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch. Eur. J. Physiol. 391, 85–100.

    Article  CAS  Google Scholar 

  16. Guharay, F. and Sachs, F. (1984) Stretch-activated single ion channel currents in tissue-cultured embryonic chick skeletal muscle. J. Physiol. (Lond.) 352, 685–701.

    CAS  Google Scholar 

  17. Yang, X. C. and Sachs, F. (1989) Block of stretch-activated ion channels in Xenopus oocytes by gadolinium and calcium ions. Science 243, 1068–1071.

    Article  PubMed  CAS  Google Scholar 

  18. Sokabe, M., Sachs, F., and Jing, Z. (1991) Quantitative video microscopy of patch clamped membranes: stress, strain, capacitance and stretch channel activation. Biophys. J. 59, 722–728.

    Article  PubMed  CAS  Google Scholar 

  19. Small, D. L. and Morris, C. E. (1994) Delayed activation of single mechanosensitive channels in Lymnaea neurons. Am. J. Physiol. 267, C598–C606.

    PubMed  CAS  Google Scholar 

  20. Hamill, O. P. and McBride, D. W., Jr. (1992) Rapid adaptation of single mechanosensitive channels in Xenopus oocytes. Proc. Natl. Acad. Sci. USA 89, 7462–7466.

    Article  PubMed  CAS  Google Scholar 

  21. Suchyna, T. M., Johnson, J. H., Clemo, H. F., Huang, Z. H., Gage, D. A., Baumgarten, C. M., and Sachs, F. (2000) Identification of a peptide toxin from Grammostola spatulata spider venom that blocks stretch activated channels. J. Gen. Physiol. 115, 583–598.

    Article  PubMed  CAS  Google Scholar 

  22. Fahlke, C. and Rudel, R. (1992) Giga-seal formation alters properties of sodium channels of human myoballs. Pflugers Arch. 420, 248–254.

    Article  PubMed  CAS  Google Scholar 

  23. Hochmuth, R. M. (2000) Micropipette aspiration of living cells. [Review] [34 refs]. J. Biomechanics 33, 15–22.

    Article  CAS  Google Scholar 

  24. Horber, J. K., Mosbacher, J., Haberle, W., Ruppersberg, J. P., and Sakmann, B. (1995) A look at membrane patches with a scanning force microscope. Biophys. J. 68, 1687–1693.

    Article  PubMed  CAS  Google Scholar 

  25. Drake, B. Prater, C. B. Weisenhorn, A. L., Gould, S. A., Albrecht, T. R., Quate, C. F., et al. (1989) Imaging crystals, polymers, and processes in water with the atomic force microscope. Science 243, 1586–1589.

    Article  PubMed  CAS  Google Scholar 

  26. Radmacher, M., Hillner, P. E., and Hansma, P. K. (1994) Scanning nearfield optical microscope using microfabricated probes. Rev. Sci. Instrum. 65, 2737–2738.

    Article  CAS  Google Scholar 

  27. Hansma, H. and Hoh, J. (1994) Biomolecular imaging with the atomic force microscope. Ann. Rev. Biophys. Biomol. Struct. 23, 115–139.

    Article  CAS  Google Scholar 

  28. Lal, R., Kim, H., Garavito, R. M., and Arnsdorf, M. F. (1993) Imaging of reconstituted biological channels at molecular resolution by atomic force microscopy. Am. J. Physiol. 265, C851–C856.

    PubMed  CAS  Google Scholar 

  29. Jena, B. P., Schneider, S. W., Geibel, J. P., Webster, P., Oberleithner, H., and Sritharan, K. C. (1997) Gi regulation of secretory vesicle swelling examined by atomic force microscopy. Proc. Natl. Acad. Sci. USA 94, 13,317–13,322.

    Article  PubMed  CAS  Google Scholar 

  30. Haberle, W., Horber, J. K., and Binnig, G. (1991) Force microscopy on living cells. J. Vac. Sci. Technol. B 9, 1210–1213.

    Article  Google Scholar 

  31. Horber, J. K., Haberle, W., Ohnesorge, F., Binnig, G., Liebich, H. G., Czerny, C. P., et al. (1992) Investigation of living cells in the nanometer regime with the scanning force microscope. Scan. Microsc. 6, 919–929.

    CAS  Google Scholar 

  32. Henderson, E. (1994) Imaging of living cells by atomic force microscopy. Prog. Surface Sci. 46, 39–60.

    Article  CAS  Google Scholar 

  33. Henderson, R. M., Schneider, S., Li, Q., Hornby, D., White, S. J., and Oberleithner, H. (1996) Imaging ROMK1 inwardly rectifying ATP-sensitive K+ channel protein using atomic force microscopy. Proc. Natl. Acad. Sci. USA 93, 8756–8760.

    Article  PubMed  CAS  Google Scholar 

  34. Radmacher, M. (1997) Measuring the elastic properties of biological samples with the AFM. IEEE Eng. Med. Biol. 16, 47–57.

    Article  CAS  Google Scholar 

  35. Schneider, S. W., Yano, Y., Sumpio, B. E., Jena, B. P., Geibel, J. P., Gekle, M., and Oberleithner, H. (1997) Rapid aldosterone-induced cell volume increase of endothelial cells measured by the atomic force microscope. Cell Biol. Int. 21, 759–768.

    Article  PubMed  CAS  Google Scholar 

  36. Fritzsche, W., Takac, L., and Henderson, E. (1997) Application of atomic force microscopy to visualization of DNA, chromatin, and chromosomes. [Review] [65 refs]. Crit. Rev. Eukaryotic Gene Exp. 7, 231–240.

    CAS  Google Scholar 

  37. Hansma, H. G., Kim, K. J., Laney, D. E., Garcia, R. A., Argaman, M., Allen, M. J., Parsonsand, S. M. (1997) Properties of biomolecules measured from atomic force microscope images: a review. [Review] [59 refs]. J. Struct. Biol. 119, 99–108.

    Article  PubMed  CAS  Google Scholar 

  38. Yang, Y., Sweeney, W. V., Schneider, K., Chait, B. T., and Tam, J. P. (1994) Two-step selective formation of three disulfide bridges in the synthesis of the C-terminal epidermal growth factor-like domain in human blood coagulation factor IX. Protein Sci. 3, 1267–1275.

    Article  PubMed  CAS  Google Scholar 

  39. Lal, R. and Yu, L. (1993) Atomic force microscopy of cloned nicotinic acetylcholine receptor expressed in Xenopus oocytes. Proc. Natl. Acad. Sci. USA 90, 7280–7284.

    Article  PubMed  CAS  Google Scholar 

  40. Lal, R. and John, S. A. (1994) Biological applications of atomic force microscopy. [Review]. Am. J. Physiol. 266, C1–21.

    PubMed  CAS  Google Scholar 

  41. John, S. A., Saner, D., Pitts, J. D., Holzenburg, A., Finbow, M. E., and Lal, R. (1997) Atomic force microscopy of arthropod gap junctions. J. Struct. Biol. 120, 22–31.

    Article  PubMed  CAS  Google Scholar 

  42. Lal, R. (1996) Imaging molecular structure of channels and receptors with an atomic force microscope. Scan. Microsc. 10(Suppl.), 81–95.

    CAS  Google Scholar 

  43. Lal, R., John, S. A., Laird, D. W., and Arnsdorf, M. F. (1995) Heart gap junction preparations reveal hemiplaques by atomic force microscopy. Am. J. Physiol. 268, C968–C977.

    PubMed  CAS  Google Scholar 

  44. Hoh, J. H., Sosinsky, G. E., Revel, J. P., and Hansma, P. K. (1993) Structure of the extracellular surface of the gap junction by atomic force microscopy. Biophys. J. 65, 149–163.

    Article  PubMed  CAS  Google Scholar 

  45. Oberleithner, H., Brinckmann, E., Schwab, A., and Krohne, G. (1994) Imaging nuclear pores of aldosterone-sensitive kidney cells by atomic force microscopy. Proc. Natl. Acad. Sci. USA 91, 9784–9788.

    Article  PubMed  CAS  Google Scholar 

  46. Folprecht, G., Schneider, S., and Oberleithner, H. (1996) Aldosterone activates the nuclear pore transporter in cultured kidney cells imaged with atomic force microscopy. Pflugers Arch. Eur. J. Physiol. 432, 831–838.

    Article  CAS  Google Scholar 

  47. Schneider, S., Folprecht, G., Krohne, G., and Oberleithner, H. (1995) Immunolocalization of lamins and nuclear pore complex proteins by atomic force microscopy. Pflugers Arch. Eur. J. Physiol. 430, 795–801.

    Article  CAS  Google Scholar 

  48. Perez-Terzic, C., Pyle, J., Jaconi, M., Stehno-Bittel, L., and Clapham, D. E. (1996) Conformational states of the nuclear pore complex induced by depletion of nuclear Ca2+ stores. Science 273, 1875–1877.

    Article  PubMed  CAS  Google Scholar 

  49. Wang, H. and Clapham, D. E. (1999) Conformational changes of the in situ nuclear pore complex. Biophys. J. 77, 241–247.

    Article  PubMed  CAS  Google Scholar 

  50. Radmacher, M., Fritz, M., and Hansma, P. K. (1995) Imaging soft samples with the atomic force microscope: gelatin in water and propanol. Biophys. J. 69, 264–270.

    Article  PubMed  CAS  Google Scholar 

  51. Wagner, P. (1998) Immobilization strategies for biological scanning probe microscopy. [Review] [58 refs]. FEBS Lett. 430, 112–115.

    Article  PubMed  CAS  Google Scholar 

  52. Korchev, Y. E., Bashford, C. L., Milovanovic, M., Vodyanoy, I., and Laband, M. J. (1997) Scanning ion conductance microscopy of living cells. Biophys. J. 73, 653–658.

    Article  PubMed  CAS  Google Scholar 

  53. Merkel, R., Nassoy, P., Leung, A., Ritchie, K., and Evans, E. (1999) Energy landscapes of receptor-ligand bonds explored with dynamic force spectroscopy. Nature 397, 50–53.

    Article  PubMed  CAS  Google Scholar 

  54. Engel, A., Lyubchenko, Y., and Muller, D. (1999) Atomic force microscopy: a powerful tool to observe biomolecules at work. [Review] [39 refs]. Trends Cell Biol. 9, 77–80.

    Article  PubMed  CAS  Google Scholar 

  55. Schabert, F. A., Henn, C., and Engel, A. (1995) Native Escherichia coli OmpF porin surfaces probed by atomic force microscopy. Science 268, 92–94.

    Article  PubMed  CAS  Google Scholar 

  56. Muller, D. J. and Engel, A. (1999) Voltage and pH-induced channel closure of porin OmpF visualized by atomic force microscopy. J. Mol. Biol. 285, 1347–1351.

    Article  PubMed  CAS  Google Scholar 

  57. Muller, D. J., Sass, H. J., Muller, S. A., Buldt, G., and Engel, A. (1999) Surface structures of native bacteriorhodopsin depend on the molecular packing arrangement in the membrane. J. Mol. Biol. 285, 1903–1909.

    Article  PubMed  CAS  Google Scholar 

  58. Yang, J., Mou, J., and Shao, Z. (1994) Structure and stability of pertussis toxin studied by in situ atomic force microscopy. FEBS Lett. 338, 89–92.

    Article  PubMed  CAS  Google Scholar 

  59. Czajkowsky, D. M. and Shao, Z. (1998) Submolecular resolution of single macromolecules with atomic force microscopy. [Review] [40 refs]. FEBS Lett. 430, 51–54.

    Article  PubMed  CAS  Google Scholar 

  60. Fisher, T. E., Marszalek, P. E., Oberhauser, A. F., Carrion, V., and Fernandez, J. M. (1999) The micro-mechanics of single molecules studied with atomic force microscopy. [Review] [35 refs]. J. Physiol. 520 Pt 1, 5–14.

    Article  PubMed  CAS  Google Scholar 

  61. Shao, Z., Yang, J., and Somlyo, A. P. (1995) Biological atomic force microscopy: from microns to nanometers and beyond. [Review] [134 refs]. Annu. Rev. Cell. Dev. Biol. 11, 241–265.

    Article  PubMed  CAS  Google Scholar 

  62. Fritz, M., Radmacher, M., and Gaub, H. E. (1994) Granula motion and membrane spreading during activation of human platelets imaged by atomic force microscopy. Biophys. J. 66, 1328–1334.

    Article  PubMed  CAS  Google Scholar 

  63. Muller, D. J., Baumeister, W., and Engel, A. (1996) Conformational change of the hexagonally packed intermediate layer of Deinococcus radiodurans monitored by atomic force microscopy. J. Bacteriol. 178, 3025–3030.

    PubMed  CAS  Google Scholar 

  64. Thalhammer, S., Stark, R. W., Muller, S., Wienberg, J., and Heckl, W. M. (1997) The atomic force microscope as a new microdissecting tool for the generation of genetic probes. J. Struct. Biol. 119, 232–237.

    Article  PubMed  CAS  Google Scholar 

  65. Fotiadis, D., Muller, D. J., Tsiotis, G., Hasler, L., Tittmann, P., Mini, T., et al. (1998) Surface analysis of the photosystem I complex by electron and atomic force microscopy. J. Mol. Biol. 283, 83–94.

    Article  PubMed  CAS  Google Scholar 

  66. Muller, D. J., Buldt, G., and Engel, A. (1995) Force-induced conformational change of bacteriorhodopsin. J. Mol. Biol. 249, 239–243.

    Article  PubMed  CAS  Google Scholar 

  67. Schoenenberger, C. A. and Hoh, J. H. (1994) Slow cellular dynamics in MDCK and R5 cells monitored by time-lapse atomic force microscopy. Biophys. J. 67, 929–936.

    Article  PubMed  CAS  Google Scholar 

  68. Radmacher, M., Fritz, M., Kacher, C. M., Cleveland, J. P., and Hansma, P. K. (1996) Measuring the viscoelastic properties of human platelets with the atomic force microscope. Biophys. J. 70, 556–567.

    Article  PubMed  CAS  Google Scholar 

  69. Rief, M., Gautel, M., Oesterhelt, F., Fernandez, J. M., and Gaub, H. E. (1997) Reversible unfolding of individual titin immunoglobulin domains by AFM [see comments]. Science 276, 1109–1112.

    Article  PubMed  CAS  Google Scholar 

  70. Florin, E. L., Rief, M., Lehmann, H., Ludwig, M., Dornmair, C., Moy, V. T., and Gaub, H. E. (1995) Sensing specific molecular interasctions with the Atomic Force Microscope. Biosens. Bioelectron. 10, 895–901.

    Article  CAS  Google Scholar 

  71. Moy, V. T., Florin, E. L., and Gaub, H. E. (1994) Adhesive forces between ligand and receptor measured by Afm. Colloids Surfaces A-Physicochem. Eng. Aspects 93, 343–348.

    Article  CAS  Google Scholar 

  72. Bustamante, J. O., Liepins, A., Prendergast, R. A., Hanover, J. A., and Oberleithner, H. (1995) Patch clamp and atomic force microscopy demonstrate TATA-binding protein (TBP) interactions with the nuclear pore complex. J. Membr. Biol. 146, 263–272.

    PubMed  CAS  Google Scholar 

  73. Horber, J. K., Mosbacher, J., and Haberle, W. (1995) Force microscopy on membrane patches, in Single-Channel Recording (Sakmann, B. and Neher, E., eds.), Plenum, New York, pp. 375–393.

    Google Scholar 

  74. Hoh, J. H. and Schoenenberger, C. A. (1994) Surface morphology and mechanical properties of MDCK monolayers by atomic force microscopy. J. Cell Sci. 107, 1105–1114.

    PubMed  Google Scholar 

  75. Sokabe, M. and Sachs, F. (1990) The structure and dynamics of patch-clamped membranes: a study by differential interference microscopy. J. Cell Biol. 111, 599–606.

    Article  PubMed  CAS  Google Scholar 

  76. McEwen, B. F., Song, M. J., Ruknudin, A., Barnard, D. P., Frank, J., and Sachs, F. (1990) Tomographic three dimensional reconstruction of patch clamped membranes imaged with the high voltage electron microscope. XII Intl. Cong. El. Microsc. 522–523 (Abstract).

    Google Scholar 

  77. Ruknudin, A., Song, M. J., and Sachs, F. (1991) The ultrastructure of patchclamped membranes: a study using high voltage electron microscopy. J. Cell Biol. 112, 125–134.

    Article  PubMed  CAS  Google Scholar 

  78. Akinlaja, J. and Sachs, F. (1998) The breakdown of cell membranes by electrical and mechanical stress. Biophys. J. 75, 247–254.

    Article  PubMed  CAS  Google Scholar 

  79. Horber, J. K. H., Mosbacher, J., Haberle, W., Ruppersberg, J. P., and Sakmann, B. (1995) A look at membrane patches with a scanning force microscope. Biophys. J. 68, 1687–1693.

    Article  PubMed  CAS  Google Scholar 

  80. Mosbacher, J., Haberle, W., and Horber, J. K. (1996) Studying membranes with scanning force microscopy and patch-clamp. J. Vac. Sci. Technol. B 14, 1449–1452.

    Article  CAS  Google Scholar 

  81. Larmer, J., Schneider, S. W., Danker, T., Schwab, A., and Oberleithner, H. (1997) Imaging excised apical plasma membrane patches of MDCK cells in physiological conditions with atomic force microscopy. Pflugers Arch. Eur. J. Physiol. 434, 254–260.

    Article  CAS  Google Scholar 

  82. Crowe, J. H. and Crowe, L. M. (1982) Induction of anhydrobiosis: membrane changes during drying. Cryobiology 19, 317–328.

    Article  PubMed  CAS  Google Scholar 

  83. Danker, T., Mazzanti, M., Tonini, R., Rakowska, A., and Oberleithner, H. (1997) Using atomic force microscopy to investigate patch-clamped nuclear membrane. Cell Biol. Int. 21, 747–757.

    Article  PubMed  CAS  Google Scholar 

  84. Bustamante, J. O. (1994) Nuclear electrophysiology. J. Membr. Biol. 138, 105–112.

    PubMed  CAS  Google Scholar 

  85. Mosbacher, J., Langer, M., Horber, H., and Sachs, F. (1998) Voltage-dependent membrane displacements measure by atomic force microscopy. J. Gen. Physiol. 111, 65–74.

    Article  PubMed  CAS  Google Scholar 

  86. Petrov, A. G. (1999) Lyotropic State of Matter: Molecular Physics and Living Matter Physics. Gordon & Breach Publishing Group, Amsterdam.

    Google Scholar 

  87. Todorov, A. T., Petrov, A. G., and Fendler, J. H. (1994) 1st observation of the converse flexoelectric effect in bilayer-lipid membranes. J. Phys. Chem. 98, 3076–3079.

    Article  CAS  Google Scholar 

  88. Todorov, A. T., Petrov, A. G., and Fendler, J. H. (1994) Flexoelectricity of charged and polar bilayer-lipid membranes studied by stroboscopic interferometry. Langmuir 10, 2344–2350.

    Article  CAS  Google Scholar 

  89. Petrov, A. G., Ramsey, R. L., and Usherwood, P. N. (1989) Curvature-electric effects in artificial and natural membranes studied using patch-clamp techniques. Eur. Biophys. J. 17, 13–17.

    Article  PubMed  CAS  Google Scholar 

  90. Petrov, A. G., Miller, B. A., Hristova, K., and Usherwood, P. N. (1993) Flexoelectric effects in model and native membranes containing ion channels. Eur. Biophys. J. 22, 289–300.

    PubMed  CAS  Google Scholar 

  91. Iwamoto, H., Czajkowsky, D. M., Cover, T. L., Szabo, G., and Shao, Z. (1999) VacA from Helicobacter pylori: a hexameric chloride channel. FEBS Lett. 450, 101–104.

    Article  PubMed  CAS  Google Scholar 

  92. Bett, G. C. L. and Sachs, F. (2000) Activation and inactivation of mechanosensitive currents in the chick heart. J. Membr. Biol. 173, 237–254.

    Article  PubMed  CAS  Google Scholar 

  93. Langer, M. G., Offner, W., Wittmann, H., Flosser, H., Schaar, H., Haberle, W., et al. (1997) A scanning force microscope for simultaneous force and patchclamp measurements on living cell tissues. Rev. Sci. Instr. 68, 2583–2590.

    Article  CAS  Google Scholar 

  94. Snyder, K., Besch, S. D., Zhang, P. C., and Sachs, F. (2000) Hardware and software modifications of the Quesant AFM for use in biology. In press.

    Google Scholar 

  95. Sachs, F. (1995) A low drift micropipette holder. Eur. J. Physiol. 429, 434–435.

    Article  CAS  Google Scholar 

  96. Snyder, K. V., Kreigstein, A. and Sachs, F. (1999) A convenient electrode holder for glass pipettes to stabilize electrode potentials. Eur. J. Physiol. 438, 405–411.

    Article  CAS  Google Scholar 

  97. Beyder, A., Snyder, K. V., and Sachs, F. (2000) New AFM cantilever for low force applications in liquids. In press.

    Google Scholar 

  98. Ashmore, J. F. (1987) A fast motile response in guinea-pig outer hair cells: the cellular basis of the cochlear amplifier. J. Physiol. (Lond.) 388, 323–347.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Snyder, K., Zhang, P.C., Sachs, F. (2001). Dynamic AFM of Patch Clamped Membranes. In: Lopatin, A.N., Nichols, C.G. (eds) Ion Channel Localization. Methods in Pharmacology and Toxicology. Humana Press. https://doi.org/10.1385/1-59259-118-3:425

Download citation

  • DOI: https://doi.org/10.1385/1-59259-118-3:425

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-833-2

  • Online ISBN: 978-1-59259-118-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics