Skip to main content

Characterization of Synthetic Gene Delivery Vectors by Infrared Spectroscopy

  • Protocol
Nonviral Vectors for Gene Therapy

Part of the book series: Methods in Molecular Medicineā„¢ ((MIMM,volume 65))

Abstract

For many decades, infrared (IR) spectroscopy has been used to characterize the structure of molecules. In IR spectroscopy, absorption of light, corresponding to vibrational and rotational transitions of a molecule, is measured. For a transition to be IR-active, a change in the dipole moment of a particular bond must occur upon excitation. This vibrational energy is not only dependent on the chemical nature of the particular covalent bonds, but also on the environment of these coupled atoms and bonds. IR spectroscopy has been previously employed in the study of the structure of nucleic acids, producing not only information about the individual bases, sugars, and phosphate backbone, but also providing information about the helical conformation of polynucleotides (1-3). IR spectroscopy has also been successfully applied to the analysis of lipids, as well as to numerous other polymers (4). Thus, IR spectroscopy potentially possesses the ability to obtain structural information about all of the components of most synthetic gene delivery complexes, as well as changes in the structure of polymeric or lipid components upon complex formation. In addition to the ability to gather detailed structural information, there are also some practical advantages to the use of IR spectroscopy for the study of plas-mid DNA and DNA complexes compared to other techniques, including the availability of a variety of sampling techniques, permitting the analysis of samples in a wide variety of physical states including solutions, solids, and gels. There is also no upper limit to the size of the sample molecule examined, allowing both short oligonucleotides and higher molecular weight DNA to be studied. IR spectroscopy is not a destructive technique, and requires only small amounts of material, making it ideal for the analysis of valuable samples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tsuboi M. (1969) Application of infrared spectroscopy to structure studies of nucleic acids. Appl. Spectrosc. Rev. 3, 45ā€“90.

    ArticleĀ  CASĀ  Google ScholarĀ 

  2. Taillandier E. and Liquier J. (1992) Infrared spectroscopy of DNA, in Methods in Enzymology. Academic, New York, pp. 307ā€“335.

    Google ScholarĀ 

  3. Fritzsche H. (1991) Infrared spectroscopy and infrared linear dichroism of nucleic acids. J. Mol. Struct. 242, 245ā€“261.

    ArticleĀ  CASĀ  Google ScholarĀ 

  4. Lewis R. N. A. H. and McElhaney R. N. (1996) Infrared Spectroscopy of Biomolecules (Mantsch H. H. and Chapman D., eds.), Wiley-Liss, New York, pp. 159ā€“202.

    Google ScholarĀ 

  5. Liquier J. and Taillandier E. (1996) Infrared spectroscopy of nucleic acids, in Infrared Spectroscopy of Biomolecules (Mantsch H. H. and Chapman D., eds.), Wiley-Liss, New York, pp. 131ā€“158.

    Google ScholarĀ 

  6. Ghomi M., Letellier R., Liquier J., and Taillandier E. (1990) Interpretation of DNA vibrational spectra by normal coordinate analysis. Int. J. Biochem. 22, 691ā€“699.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  7. Brahms J., Pilet J., Phuong Lan T. T., and Hill L. R. (1973) Direct evidence of the C-like form of sodium deoxyribonucleate. Proc. Nat. Acad. Sci. USA 70, 3352ā€“3355.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  8. Loprete D. M. and Hartman K. A. (1989) Existence of C structure in poly (dA-dC) poly (dG-dT). J. Biomol. Struct. Dynam. 7, 347ā€“362.

    CASĀ  Google ScholarĀ 

  9. Kang H. and W. C. Johnson J. (1994) Infrared linear dichroism reveals that A-, B-, and C-DNAs in films have bases highly inclined from perpendicular to the helix axis. Biochemistry 33, 8330ā€“8338.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  10. Akao T., Fukumoto T., Ihara H., and Ito A. (1996) Conformational change in DNA induced by cationic bilayer membranes. FEBS Lett. 391, 215ā€“218.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  11. Zuidam N. J., Barenholz Y., and Minsky A. (1999) Chiral DNA packing in DNA-cationic lipid assemblies. FEBS Lett. 457, 419-422.

    Google ScholarĀ 

  12. Maestre M. F. and Reich, C. (1980) Contribution of light scattering to circular dichroism of DNA films, DNA-polylysine complexes, and DNA particles in ethanolic solutions. Biochemistry 19, 5214ā€“5223.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  13. Middaugh C. R., Evans R. K., Montgomery D. L., and Casimiro D. R. (1998) Analysis of plasmid DNA from a pharmaceutical perspective. J. Pharm. Sci. 87, 130ā€“146.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  14. Bailly F., Bailly C., Colson P., Houssier C., and Henichart J. P. (1993) A tandem repeat of the SPKK peptide motif induces psi-type DNA structures at alternating AT sequences. FEBS Lett. 324, 181ā€“184.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  15. Zhu N., Liggitt D., Liu Y., and Debs R. (1993) Systemic gene expression after intravenous DNA delivery into adult mice. Science 261, 209ā€“211.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  16. Liu Y., Liggitts D., Zhong W., Tu G., Gaensler K., and Debs R. (1995) Cationic liposome-mediated intravenous gene delivery. J. Biol. Chem. 270,24,864ā€“24,870.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  17. Gorman C. M., Aikawa M., Fox B., Fox E., Lapuz C., Michaud B., et al. (1997) Efficient in vivo delivery of DNA to pulmonary cells using the novel lipid EDMPC. Gene Ther. 4, 983ā€“992.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  18. Mounkes L. C., Zhong W., Cipres-Palacin G., Heath, T. D., and Debs R. J. (1998) Proteoglycans mediate cationic liposome-DNA complex-based gene delivery in vitro and in vivo. J. Biol. Chem. 273, 26,164ā€“26,170.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  19. Stephan D. J., Yang Z.-Y., San H., Simari R. D., Wheeler C. J., Felgner P. L., et al. (1996) A new cationic liposome DNA complex enhances the efficiency of arterial gene transfer in vivo. Human Gene Ther. 7, 1803ā€“1812.

    ArticleĀ  CASĀ  Google ScholarĀ 

  20. Pitard B., Oudrhiri N., Vigneron J.-P., Hauchecorne M., Aguerre O., Tour R., et al. (1999) Structural characteristics of supramolecular assemblies formed by guanidinium-cholesterol reagents for gene transfection. Proc. Natl. Acad. Sci. USA 96, 2621ā€“2626.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  21. Thierry A. R., Lunardi-Iskandar Y., Bryant J. L., Rabinovich P., Gallo R. C., and Mahan L. C. (1995) Systemic gene therapy: biodistribution and long-term expression of a transgene in mice. Proc Natl Acad Sci USA 92, 9742ā€“9746.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  22. Parker S. E., Khatibi S., Margalith M., Anderson D., Yankauckas M., Gromkowski S. H., et al. (1996) Plasmid DNA gene therapy: studies with the human interleukin-2 gene in tumor cells in vitro and in the murine B16 melanoma model in vivo. Cancer Gene Ther. 3, 175ā€“185.

    CASĀ  PubMedĀ  Google ScholarĀ 

  23. Mantsch H. H. and McElhaney, R. N. (1991) Phospholipid phase transitions in model and biological membranes as studied by infrared spectroscopy. Chem. Phys. Lipids 57, 213ā€“226.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  24. Choosakoonkriang S., Wiethoff C. M., and Middaugh C. R. (2001) Analysis of cationic lipid/DNA complexes by infrared spectroscopy. J. Biol. Chem. 276, 8037ā€“8043.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  25. Tamm L. K. and Tatulian, S. A. (1997) Infrared spectroscopy of proteins and peptides in lipid bilayers. Q. Rev. Biophys. 30, 365ā€“429.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  26. Colthup N. B., Daly L. H., and Wiberley S. E. (1975) Introduction to Infrared and Raman Spectroscopy, 2nd ed. Academic, New York.

    Google ScholarĀ 

  27. Griffiths P. R. and Haseth J. A. D. (1986) Fourier transform infrared spectroscopy. Wiley, New York.

    Google ScholarĀ 

  28. Oberg K. A. and Fink A. L. (1998) A new attenuated total reflectance fourier transform infrared spectroscopy method for the study of proteins in solution. Ana-l. Biochem. 256, 92ā€“106.

    ArticleĀ  CASĀ  Google ScholarĀ 

  29. Culler S. R. (1993) Diffuse reflectance infrared spectroscopy: sampling techniques for qualitative/quanitative analysis of solids, in Practical Sampling Techniques for Infrared Analysis (Coleman P. B., ed.), CRC Press, London, pp. 93ā€“106.

    Google ScholarĀ 

  30. Kasbauer M., Junglas M., and Bayerl T. M. (1999) Effect of cationic lipids in the formulation of asymmetries in supported bilayers. Biophys. J. 76, 2600ā€“2605.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  31. Tajmir-Riahi H. A., Naoui M., and Diamantoglou S. (1994) DNA-carbohydrate interaction. The effects of mono-and disaccharides on the solution structure of calf-thymus DNA. J. Biomol. Struct. Dynam. 12, 217ā€“234.

    CASĀ  Google ScholarĀ 

  32. Heidar-Ali Tajmir-Riahi H. A., and Messaoudi S. (1992) The effects of monova-lent cations Li+, Na+, K+, NH4+, Rb+, and Cs+ on the solid and solution structures of the nucleic components. Metal ion binding and sugar conformation. J. Biomol. Struct. Dynam. 10, 345ā€“365.

    Google ScholarĀ 

  33. Tajmir-Riahi H. A., Naoui M., and Ahmad R. (1993) Effects of Cu2+ andPb2+on the solution structure of calf thymus DNA: DNA condensation and denaturation studied by fourier transform IR difference spectroscopy. Biopolymers 33, 1819ā€“1827.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  34. Tajmir-Riahi H. A., Naoui M., and Ahmad R. (1993) The effects of cobalt-hexa-amine and cobalt-penta-amine cations on the solution structure of calf-thymus DNA. DNA condensation and structural features studied by FTIR difference spectroscopy. J. Biomol. Struct. Dynam. 11, 83ā€“93.

    CASĀ  Google ScholarĀ 

  35. Ahmad R., Naoui M., Neault J. F., Diamantoglou S., and Tajmir-Riahi H. A. (1996) An FTIR spectroscopic study of calf-thymus DNA complexation with Al(III) and Ga(III) cations. J. Biomol. Struct. Dynam. 13, 795ā€“802.

    CASĀ  Google ScholarĀ 

  36. Neault J. F., Naoui M., Manfait M., and Tajmir-Riahi H. A. (1996) Aspirin-DNA interaction studied by FTIR and laser raman difference spectroscopy. FEBS Lett. 382, 26ā€“30.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  37. Medina M. A., Ramirez F. J., Ruiz-Chica J., Chavarria T., Lopez-Navarrete J. T., and Sanchez-Jimenez F. (1998) DNA-Chlopheniramine interaction studied by spectroscopic techniques. Biochim. Biophys. Acta 1379, 129ā€“133.

    CASĀ  PubMedĀ  Google ScholarĀ 

  38. Walters L. and Dev S. B. (1989) Conformational analysis of a peptide-DNA interaction by fourier transform infrared spectroscopy (FTIR), in Peptides (Rivier J. E. and Marshall G. R., eds.), ESCOM Science, Leiden, pp. 702-703.

    Google ScholarĀ 

  39. Kim J. S., Lee S. A., Carter B. J., and Rupprecht A. (1997) Stabilization of the B conformation in unoriented films of calf thymus DNA by NaCl: a raman and IR study. Biopolymers 41, 233ā€“238.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  40. White A. P. and Powell J. W. (1995) Observation of hydration-dependent conformation of the (dG)20.(dG)20(dC)20 oligonucleotide triplex using FTIR spectroscopy. Biochemistry 34, 1137ā€“1142.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  41. Alex S. and Dupuis P. (1989) FT-IR investigation of cadmium binding by DNA. Inorg. Chim. Acta. 157, 271ā€“281.

    ArticleĀ  CASĀ  Google ScholarĀ 

  42. Hirsch-Lerner D. and Barenholz Y. (1999) Hydration of lipoplexes commonly used in gene delivery: follow-up by laurdan fluorescence changes and quantification by differential scanning calorimetry. Biochim. Biophys. Acta 1461, 47ā€“57.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  43. Tajmir-Riahi H. A., Neault J. F., and Naoui M. (1995) Does DNA acid fixation produce left-handed Z Structure? FEBS Lett. 370, 105ā€“108.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  44. Zuidam N., Hirsch-Lerner D., Margulies S., and Barenholz Y. (1999) Lamellarity of cationic liposomes and mode of preparation of lipoplexes affect transfection efficiency. Biochim. Biophys. Acta 1419, 207ā€“220.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  45. Koltover I., Salditt T., and Safinya C. (1999) Phase diagram, stability, and overcharging of lamellar cationic lipid-DNA self-assembled complexes. Biophys. J. 77, 915ā€“924.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  46. Kichler A., Behr J. P., and Erbacher P. (1999) Polyethyleneimines: A family of potent polymers for nucleic acid delivery, in Nonviral Vectors for Gene Therapy (Huang, L., Hung M.-C., and Wagner E., eds.), Academic, San Diego, pp. 191ā€“206.

    ChapterĀ  Google ScholarĀ 

  47. Godbey W. T., Wu K. K., and Mikos A. G. (1999) Tracking the intracellular path of poly(ethylenimine)/DNA complexes for gene delivery. Proc. Natl. Acad. Sci. USA 96, 5177ā€“5181.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  48. Fischer D., Bieber T., Li Y., Elsasser H. P., and Kissel T. (1999) A novel non-viral vector for DNA delivery based on low molecular weight, branched polyethylenimine: effect of molecular weight on transfection efficiency and cyto-toxicity. Pharm. Res. 16, 1273ā€“1279.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  49. Sukhorukov G. B., Montrel M. M., Petrov A. I., Shabarchina L. I., and Sukhorukov B. I. (1996) Multilayer films containing immobilized nucleic acids. Their structure and possibilities in biosensor applications. Biosensor Bioelectronics 11, 913ā€“922.

    ArticleĀ  CASĀ  Google ScholarĀ 

  50. Thomas G. J., Jr. and Tsuboi M. (1993) Raman spectroscopy of nucleic acids and their complexes. Adv. Biophys. Chem. 3, 1ā€“70.

    CASĀ  Google ScholarĀ 

  51. Wen Z. Q., Armstrong A., and Thomas G. J., Jr.(1999) Demonstration by ultraviolet resonance Raman spectroscopy of differences in DNA organization and interactions in filamentous viruses Pf1 and fd. Biochemistry 38, 3148ā€“3156.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2001 Humana Press Inc.

About this protocol

Cite this protocol

Choosakoonkriang, S., Wiethoff, C.M., Kueltzo, L.A., Russell Middaugh, C. (2001). Characterization of Synthetic Gene Delivery Vectors by Infrared Spectroscopy. In: Findeis, M.A. (eds) Nonviral Vectors for Gene Therapy. Methods in Molecular Medicineā„¢, vol 65. Humana Press. https://doi.org/10.1385/1-59259-139-6:285

Download citation

  • DOI: https://doi.org/10.1385/1-59259-139-6:285

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-712-0

  • Online ISBN: 978-1-59259-139-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics