Skip to main content

Filter-Binding Assays

  • Protocol
DNA-Protein Interactions

Part of the book series: Methods in Molecular Biology ((MIMB,volume 148))

  • 2151 Accesses

Abstract

Membrane filtration has a long history in the analysis of protein-nucleic acid complex formation, having first been used to examine RNA-protein interactions (1), before being introduced to DNA-protein interaction studies by Jones and Berg in 1966 (2). The principle of the technique is straightforward. Under a wide range of buffer conditions, nucleic acids pass freely through membrane filters, whereas proteins and their bound ligands are retained. Thus, if a particular protein binds to a specific DNA sequence, passage through the filter will result in retention of a fraction of the protein-DNA complex by virtue of the protein component of the complex. The amount of DNA retained can be determined by using radioactively labeled DNA to form the complex and then determining the amount of radioactivity retained on the filter by scintillation counting. The technique can be used to analyze both binding equilibria and kinetic behavior, and if the DNA samples retained on the filter and in the filtrate are recovered for further processing, the details of the specific binding site can be probed by interference techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nirenberg, M. and Leder, P. (1964) RNA codewords and protein synthesis. The effect of trinucleotides upon the binding of sRNA to ribosomes. Science 145, 1399–1407.

    Article  PubMed  CAS  Google Scholar 

  2. Jones, O. W. and Berg, P. (1966) Studies on the binding of RNA polymerase to polynucleotides. J. Mol. Biol. 22, 199–209.

    Article  PubMed  CAS  Google Scholar 

  3. Riggs, A. D., Bourgeois, S., Newby, R. F., and Cohn, M. (1968) DNA binding of the lac repressor. J. Mol. Biol. 34, 365–368.

    Article  PubMed  CAS  Google Scholar 

  4. Riggs, A. D., Suzuki, H., and Bourgeois, S. (1970) lac repressor-operator interac-tion. I. Equilibrium studies. J. Mol. Biol. 48, 67–83.

    Article  PubMed  CAS  Google Scholar 

  5. Riggs, A. D., Bourgeois, S., and Cohn, M. (1970) The lac repressor-operator interaction. III. Kinetic studies. J. Mol. Biol. 53, 401–417.

    Google Scholar 

  6. Phillips, S. E. V., Manfield, I., Parsons, I., Davidson, B. E., Rafferty, J. B., Somers, W. S., et al. (1989) Cooperative tandem binding of Met repressor from Escherichia coli. Nature 341, 711–715.

    CAS  Google Scholar 

  7. Old, I. G., Phillips, S. E. V., Stockley, P. G., and Saint-Girons, I. (1991) Regulation of methionine biosynthesis in the enterobacteriaceae. Prog. Biophys. Mol. Biol. 56, 145–185.

    Article  PubMed  CAS  Google Scholar 

  8. Ryan, P. C., Lu, M., and Draper, D. E. (1991) Recognition of the highly conserved GTPase center of 23S ribosomal RNA by ribosomal protein L1 1 and the antibiotic thiostrepton. J. Mol. Biol. 221, 1257–1268.

    PubMed  CAS  Google Scholar 

  9. Wyman, J. and Gill, S. J. (1990) In Binding and Linkage: Functional Chemistry of Biological Macromolecules, chap. 2, University Science Books, Mill Valley, CA.

    Google Scholar 

  10. Siebenlist, U. and Gilbert, W. (1980) Contacts between Escherichia coli RNA polymerase and an early promoter of phage T7. Proc. Natl. Acad. Sci. USA 77, 122–126.

    Article  PubMed  CAS  Google Scholar 

  11. Hayes, J. J. and Tullius, T. D. (1989) The missing nucleoside experiment: a new technique to study recognition of DNA by protein. Biochemistry 28, 9521–9527.

    Article  PubMed  CAS  Google Scholar 

  12. Maxam, A. M. and Gilbert, W. K. (1980) Sequencing end-labelled DNA with base-specific chemical cleavages. Methods Enzymol. 65, 499–560.

    Article  PubMed  CAS  Google Scholar 

  13. Tuerk, C. and Gold, L. (1990) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacterophage T4 DNA polymerase. Science 249, 505–510.

    Article  PubMed  CAS  Google Scholar 

  14. Ellington, A. D. and Szostak, J. W. (1990) In vitro selection of RNA molecules that bind specific ligands. Nature 346, 818–822.

    Article  PubMed  CAS  Google Scholar 

  15. Conrad, R. C., Giver, L., Tian, Y. and Ellington, A. D. (1996) In vitro selection of nucleic acid aptamers that bind proteins. Methods Enzymol. 267, 336–367.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Stockley, P.G. (2001). Filter-Binding Assays. In: Moss, T. (eds) DNA-Protein Interactions. Methods in Molecular Biology, vol 148. Humana Press. https://doi.org/10.1385/1-59259-208-2:001

Download citation

  • DOI: https://doi.org/10.1385/1-59259-208-2:001

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-625-3

  • Online ISBN: 978-1-59259-208-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics