Skip to main content

ARF GTPase-Activating Protein 1

  • Protocol
GTPase Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 189))

Abstract

ARF-family GTPases function as regulators of multiple membrane trafficking processes in all eukaryotic cells. Six ARF proteins have been identified in humans, all of which contain a myristoyl residue, attached to their aminoterminal glycine by an amide bond. In their active, guanosine triphosphatebound (GTP-bound) state ARFs associate with membranes and trigger the recruitment of cytosolic proteins to the membrane. The switch to the GTPbound tate is under the control of a family of ARF-directed guanine-nucleotideexchange proteins containing a Sec7-homology domain (for review see ref. 1). The subsequent deactivation of ARFs and their dissociation from membranes depends on the hydrolysis of bound GTP. However, ARF proteins are devoid of intrinsic GTPase activity, and GTP hydrolysis depends on the action of GTPase-activating proteins (GAPs). ARF GAPs are a family of proteins which contain a conserved GAP domain of approx 130 amino acids with a unique Cys4 zinc-finger motif near their amino-terminal part (29). Different ARF GAPs display a limited specificity to various ARF proteins in vitro, whereas additional specificity may be provided by targeting to distinct cellular compartments through variable domains that are present on various GAP molecules (1012).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jackson, C. L. and Casanova, J. E. (2000) Turning on ARF: the Sec7 family of guanine-nucleotide-exchange factors. Trends Cell Biol. 10, 60–67.

    Article  PubMed  CAS  Google Scholar 

  2. Cukierman, E., Huber, I., Rotman, M., and Cassel, D. (1995) The ARF1 GTPase-activating protein: zinc finger motif and Golgi complex localization. Science 270, 1999–2002.

    Article  PubMed  CAS  Google Scholar 

  3. Poon, P. P., Wang, X., Rotman, M., Huber, I., Cukierman, E., Cassel, D., et al. (1996) Saccharomyces cerevisiae Gcs1 is an ADP-ribosylation factor GTPase-activating protein. Proc. Natl. Acad. Sci. USA 93, 10,074–10,077.

    Article  PubMed  CAS  Google Scholar 

  4. Poon, P. P., Cassel, D., Spang, A., Rotman, M., Pick, E., Singer, R. A., et al. (1999) Retrograde transport from the yeast Golgi is mediated by two ARF GAP proteins with overlapping function. EMBO J. 18, 555–564.

    Article  PubMed  CAS  Google Scholar 

  5. Premont, R. T., Claing, A., Vitale, N., Freeman, J. L., Pitcher, J. A., Patton, W. A., et al. (1998) beta2-adrenergic receptor regulation by GIT1, a G protein-coupled receptor kinase-associated ADP ribosylation factor GTPase-activating protein. Proc. Natl. Acad. Sci. USA 95, 14,082–14,087.

    Article  PubMed  CAS  Google Scholar 

  6. Bagrodia, S., Bailey, D., Lenard, Z., Hart, M., Guan, J. L., Premont, R. T., et al. (1999) A tyrosine-phosphorylated protein that binds to an important regulatory region on the cool family of p21-activated kinase-binding proteins. J. Biol. Chem. 274, 22,393–22,400.

    Article  PubMed  CAS  Google Scholar 

  7. Brown, M. T., Andrade, J., Radhakrishna, H., Donaldson, J. G., Cooper, J. A., and Randazzo, P. A. (1998) ASAP1, a phospholipid-dependent arf GTPase-activating protein that associates with and is phosphorylated by Src. Mol. Cell. Biol. 18, 7038–7051.

    PubMed  CAS  Google Scholar 

  8. Andreev, J., Simon, J. P., Sabatini, D. D., Kam, J., Plowman, G., Randazzo, P. A., et al. (1999) Identification of a new Pyk2 target protein with Arf-GAP activity. Mol. Cell. Biol. 19, 2338–2350.

    PubMed  CAS  Google Scholar 

  9. Kondo, A., Hashimoto, S., Yano, H., Nagayama, K., Mazaki, Y., and Sabe, H. (2000) A new raxillin-binding protein, PAG3/papalpha/KIAA0400, bearing an ADP-ribosylation factor GTPase-activating protein activity, is involved in paxillin recruitment to focal adhesions and cell migration. Mol. Biol. Cell 11, 1315–1327.

    PubMed  CAS  Google Scholar 

  10. Huber, I., Cukierman, E., Rotman, M., Aoe, T., Hsu, V. W., and Cassel, D. (1998) Requirement for both the amino-terminal catalytic domain and a noncatalytic domain for in vivo activity of ADP-ribosylation factor GTPase-activating protein. J. Biol. Chem. 273, 24,786–24,791.

    Article  PubMed  CAS  Google Scholar 

  11. Aoe, T., Huber, I., Vasudevan, C., Watkins, S. C., Romero, G., Cassel, D., et al. (1999) The KDEL receptor regulates a GTPase-activating protein for ADP-ribosylation factor 1 by interacting with its non-catalytic domain. J. Biol. Chem. 274, 20,545–20,549.

    Article  PubMed  CAS  Google Scholar 

  12. Randazzo, P. A., Andrade, J., Miura, K., Brown, M. T., Long, Y. Q., Stauffer, S., et al. (2000) The Arf GTPase-activating protein ASAP1 regulates the actin cytoskeleton. Proc. Natl. Acad. Sci. USA 11, 4011–4016.

    Article  Google Scholar 

  13. Makler, V., Cukierman, E., Rotman, M., Admon, A., and Cassel, D. (1995) ADP-ribosylation factor-directed GTPase-activating protein. Purification and partial characterization. J. Biol. Chem. 270, 5232–5237.

    Article  PubMed  CAS  Google Scholar 

  14. Huber, I., Rotman, M., Pick, E., Makler, V., Rothem, L., Cukierman, E., et al. (2001) Methods Enzymol. 329, 307–316.

    Article  PubMed  CAS  Google Scholar 

  15. Antonny, B., Beraud-Dufour, S., Chardin, P., and Chabre, M. (1997) N-terminal hydrophobic residues of the G-protein ADP-ribosylation factor-1 insert into membrane phospholipids upon GDP to GTP exchange. Biochemistry 36, 4675–4684.

    Article  PubMed  CAS  Google Scholar 

  16. Goldberg, J. (1998) Structural basis for activation of ARF GTPase: mechanisms of guanine nucleotide exchange and GTP-myristoyl switching. Cell 95, 237–248.

    Article  PubMed  CAS  Google Scholar 

  17. Beraud-Dufour, S., Paris, S., Chabre, M., and Antonny, B. (1999) Dual interaction of DP ribosylation factor 1 with Sec7 domain and with lipid membranes during catalysis of guanine nucleotide exchange. J. Biol. Chem. 274, 37,629–37,636.

    Article  PubMed  CAS  Google Scholar 

  18. Antonny, B., Huber, I., Paris, S., Chabre, M., and Cassel, D. (1997) Activation nof ADP-ribosylation factor 1 GTPase-activating protein by phosphatidylcholine-derived diacylglycerols. J. Biol. Chem. 272, 30,848–30,851.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Humana Press Inc.

About this protocol

Cite this protocol

Huber, I., Cukierman, E., Rotman, M., Cassel, D. (2002). ARF GTPase-Activating Protein 1. In: Manser, E., Leung, T. (eds) GTPase Protocols. Methods in Molecular Biology™, vol 189. Springer, Totowa, NJ. https://doi.org/10.1385/1-59259-281-3:199

Download citation

  • DOI: https://doi.org/10.1385/1-59259-281-3:199

  • Publisher Name: Springer, Totowa, NJ

  • Print ISBN: 978-0-89603-934-6

  • Online ISBN: 978-1-59259-281-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics