Skip to main content

Automated Structure Verification of Small Molecules Libraries Using 1D and 2D NMR Techniques

  • Protocol
Combinatorial Library

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 201))

Abstract

The purity control and the structure verification of compound collections from automated synthesis and combinatorial chemistry play an essential role in the success of medicinal chemistry programs. High performance liquid chromatography (HPLC), mass spectrometry (MS), and liquid chromatographymass spectrometry (LC-MS) techniques are generally accepted as the most appropriate means of characterization (1,2). While these analytical methods are fast and easy to automate, they do not provide sufficient structural and quantitative data about the desired products.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jung G. (ed.) (1999) Combinatorial Chemistry, Wiley-VCH Weinheim, and references cited therein.

    Google Scholar 

  2. Sepetov N. and Issakova O. (1999) Analytical characterization of synthetic organic libraries. Comb. Chem. Technol., 169–203.

    Google Scholar 

  3. Pretsch A. (1998) Möglichkeiten und Grenzen der vollautomatischen Spektreninterpretation. Nachr. Chem. Tech. Lab. 46(4, Suppl.), A71–A73.

    CAS  Google Scholar 

  4. Shapiro M. J. and Gounarides J. S. (1999) NMR methods utilized in combinatorial chemistry research. Prog. NMR Spectrosc. 35, 153–200.

    Article  CAS  Google Scholar 

  5. Abraham R. J. (1999) A model for the calculation of proton chemical shifts in non-conjugated organic compounds. Prog. NMR Spectrosc., 35, 85–152.

    Article  CAS  Google Scholar 

  6. Pretsch E. and Bürgin Schaller R. (1994) A computer program for the automatic estimation of 1H NMR chemical shifts. Anal. Chim. Acta 312, 95–105.

    Google Scholar 

  7. Pretsch E. and Fürst A. (1990) A computer program for the prediction of 13C-NMR chemical shifts of organic compounds. Anal. Chim. Acta 229, 17–25.

    Article  Google Scholar 

  8. Thiele H., Paape R., Maier W., and Grzonka M. (1995) Ein datenbank-und informationssystem zur Verwaltung und Interpretation von NMR-Spektren, GIT Fachz. Lab. 7, 668–670.

    Google Scholar 

  9. Barth A. (1992) Specinfo—An integrated spectroscopic information system. J. Chem. Inf. Comput. Sci. 32, 291.

    Article  Google Scholar 

  10. Kalchhauser H. and Robien W. (1984) CSEARCH: A computer program for identification of organic compounds and fully automated assignments of carbon-13 nuclear magnetic resonance spectra, J. Chem. Inf. Comput. Sci. 25(2), 103–108.

    Google Scholar 

  11. Bürgin Schaller R., Munk M. E., and Pretsch E. (1996) Spectra estimation for computer-aided structure determination. J. Chem. Inf. Comput. Sci. 36, 239–243.

    Article  Google Scholar 

  12. Schriber H. and Pretsch E. (1997) Rule-based system to derive automatically good-list and bad-list entries for structure generators from spectra. J. Chem. Inf. Comput. Sci. 37, 884–891.

    Article  CAS  Google Scholar 

  13. Badertscher M., Korytko A., Schulz K. P., Madison M., Munk M. E., Portmann P., Junghans M., Fontana P., and Pretsch E. (2000) Assemble 2.0: A structure generator. Chemom. Intell. Lab. Syst. 51, 73–79.

    Article  CAS  Google Scholar 

  14. Will M., Fachinger W., and Richert J. R. (1996) Fully automated structure elucidation— a spectroscopist’s dream comes true. J. Chem. Inf. Comput. Sci. 32(2), 221–22

    Google Scholar 

  15. Williams A., Mityushev D., Shilay V., and Kvasha M. (1999) NMR prediction software and tubeless NMR—an analytical tool for screening of combinatorial libraries, Somerset, New Jersey, November 14–19, Eastern Analytical Symposium, Presentation.

    Google Scholar 

  16. Schröder H., Neidig P., and Rossé G. (2000) High throughput structure verification of a substituted 4-phenylbenzopyran library using 2D NMR techniques. Angew. Chem., Intl. Ed. 39, 3816–3819.

    Article  Google Scholar 

  17. Schröder H., Neidig P., and Rossé G. (2000) AUTODROP, a novel method for the automated structure verification in combinatorial chemistry, Pacifichem International Chemical Congress of Pacific Basin Societies, Honolulu, Hawaii, December 14–19, Poster presentation.

    Google Scholar 

  18. Schröder H. and Neidig P. (1998) Method of verifying the synthesis of organic molecules in combinatorial chemistry. DE-19849231-C2 and US sn 09/422,639.

    Google Scholar 

  19. Schröder H., Rossé G., and Neidig P. (1999) Automated structure verification of combinatorial library members using 2D NMR techniques, 37th IUPAC Congress/27th GDCh General Meeting, Berlin, Germany, August 14–19, Poster presentation.

    Google Scholar 

  20. Schröder H. and Neidig P. (1999) AutoDROP, a new method of automated structure verification in combinatorial chemistry. Bruker Report 147, 18–21.

    Google Scholar 

  21. Fischer C., Neidig P., and Schröder H. (2000) New AutoDROP development: structure verification in combinatorial chemistry based on 1D NMR spectra. Bruker Report 148, 27.

    Google Scholar 

  22. Jurd L. (1991) Synthesis of 4-phenyl-2H-1-benzopyranes. J. Heterocycl. Chem., 28, 983–986.

    Article  CAS  Google Scholar 

  23. Ugi I., Dömling A., and Ebert B. (1999) in Combinatorial Chemistry (Jung G., ed.), Wiley-VCH Weinheim, 125–165.

    Chapter  Google Scholar 

  24. Weber L., Illgen K., and Almstetter M. (1999) Discovery of new multi component reactions with combinatorial methods. Synlett 3, 366–374.

    Article  Google Scholar 

  25. Ross A. and Senn H. (2001) Automation of measurements and data evaluation in biomolecular NMR screening, DDT 6(11), 583–593.

    PubMed  CAS  Google Scholar 

  26. Ross A., Schlotterbeck G., and Senn H. (2000) Spectroscopic measurement method using NMR, EPA 00810338.4.

    Google Scholar 

  27. Ross A., Schlotterbeck G., Senn H., and von Kienlin M. (2001) Application of chemical shift imaging for simultaneous and fast acquisition of NMR spectra on multiple samples, ENC Orlando, Florida} 11–16 March, Poster presentation.

    Google Scholar 

  28. Spraul M., Hofmann M., Ackermann M., Nicholls A. W., Damment S. J. P., Haselden N. J., Shockcor J. P., Nicholson J. K., and Lindon J. C. (1997) Flow injection proton nuclear magnetic resonance spectroscopy combined with pattern recognition methods: Implications for rapid structural studies and high throughput biochemical screening. Anal. Commun. 34, 339–341.

    Article  CAS  Google Scholar 

  29. Spraul M., Hofmann M., and Neidig P. (1999) High-throughput flow-injection NMR and its applications. Bruker Report 147, 14–17.

    Google Scholar 

  30. Keifer P. A., Smallcombe S. H., Williams E. H., Salomon K. E., Mendez G., Belletire J. L., and Moore C. D. (2000) Direct-injection NMR (DI-NMR): A flow NMR technique for the analysis of combinatorial chemistry libraries. J. Comb. Chem. 2, 151–171.

    Article  PubMed  CAS  Google Scholar 

  31. Schlotterbeck G., Ross A., Senn H., Hochstrasser R., Tschirky H., Seydoux R., Marek D., Kühn T., Schett O., and Warden M. (2001) High resolution NMR in capillary tubes a new miniaturized 1mm TXI Probe, ENC Orlando, Florida 11–16 March, Poster presentation.

    Google Scholar 

  32. Hegy G., Görlach E., Richmond R., and Bitsch F. (1996) High throughput electrospray mass spectrometry of combinatorial chemistry racks with automated contamination surveillance and results reporting. Rapid Commun. Mass Spectrom. 9, 1894–1900.

    Article  Google Scholar 

  33. Görlach E., Richmond R., and Lewis I. (1998) High-throughput flow injection analysis mass spectroscopy with networked delivery of color-rendered results. 2. Three-dimensional spectral mapping of 96-well combinatorial chemistry racks. Anal. Chem. 70, 3227–3234.

    Article  PubMed  Google Scholar 

  34. Graf von Roedern E. (1998) A new method for the characterization of chemical libraries—solely by HPLC retention times. Mol. Diversity 3, 253–256.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Humana Press Inc.

About this protocol

Cite this protocol

Rossé, G., Neidig, P., Schröder, H. (2002). Automated Structure Verification of Small Molecules Libraries Using 1D and 2D NMR Techniques. In: English, L.B. (eds) Combinatorial Library. Methods in Molecular Biology™, vol 201. Springer, Totowa, NJ. https://doi.org/10.1385/1-59259-285-6:123

Download citation

  • DOI: https://doi.org/10.1385/1-59259-285-6:123

  • Publisher Name: Springer, Totowa, NJ

  • Print ISBN: 978-0-89603-980-3

  • Online ISBN: 978-1-59259-285-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics