Skip to main content

Approaches to Proteomic Analysis of Human Tumors

  • Protocol
Tumor Suppressor Genes

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 222))

Abstract

The involvement of tumor suppressor genes (TSG) in cancer initiation and progression is well documented in several tumor types such as colon (APC, p53) and breast (BrcA1, BrcA2) cancers. Loss of heterozygosity of distinct chromosomal regions, which are thought to harbor as yet unidentified TSGs, have also been linked to many cancer types. Traditional research approaches such as positional cloning have greatly assisted in elucidation of these genetic factors, and continue to be critical in efforts to understand the nature and role of TSGs in human cancers. In parallel, molecular profiling is a new strategy for analysis of tumors that has emerged based on the information provided by the Human Genome Project and the development of several high-throughput technologies. This new research concept utilizes global measurements of mRNA and protein expression patterns in tumor cells and their normal counterparts in search of the genetic culprits responsible for tumorigenesis (1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Emmert-Buck, M., Strausberg, R., Krizman, D., et al. (2000) Molecular profiling of clinical tissue specimens: feasibility and applications. Am. J. Pathol. 156, 1109–1115.

    Article  PubMed  CAS  Google Scholar 

  2. Emmert-Buck, M. R., Bonner, R. F., Smith, P. D., et al. (1996) Laser capture microdissection. Science 274, 998–1001.

    Article  PubMed  CAS  Google Scholar 

  3. Gillespie, J. W., Ahram, M., Best, C. J., et al. (2001) The role of tissue microdissection in cancer research. Cancer J. 7, 32–39.

    PubMed  CAS  Google Scholar 

  4. Brown, M. R., Chuaqui, R., Vocke, C. D., et al. (1999) Allelic loss on chromosome arm 8p: analysis of sporadic epithelial ovarian tumors. Gynecol. Oncol. 74, 98–102.

    Article  PubMed  CAS  Google Scholar 

  5. Chung, T. K., Cheung, T. H., Lo, W. K., et al. (2000) Loss of heterozygosity at the short arm of chromosome 3 in microdissected cervical intraepithelial neoplasia. Cancer Lett. 154, 189–194.

    Article  PubMed  CAS  Google Scholar 

  6. Boni, R., Matt, D., Voetmeyer, A., Burg, G., and Zhuang, Z. (1998) Chromosomal allele loss in primary cutaneous melanoma is heterogeneous and correlates with proliferation. J. Invest. Dermatol. 110, 215–217.

    Article  PubMed  CAS  Google Scholar 

  7. Emmert-Buck, M. R., Lubensky, I. A., Dong, Q., et al. (1997) Localization of the multiple endocrine neoplasia type I (MEN1) gene based on tumor loss of heterozygosity analysis. Cancer Res. 57, 1855–1858.

    PubMed  CAS  Google Scholar 

  8. Romagnoli, S., Roncalli, M., Graziani, D., et al. (2001) Molecular alterations of Barrett’s esophagus on microdissected endoscopic biopsies. Lab. Invest. 81, 241–247.

    Article  PubMed  CAS  Google Scholar 

  9. Shivapurkar, N., Sood, S., Wistuba, II, et al. (1999) Multiple regions of chromosome 4 demonstrating allelic losses in breast carcinomas. Cancer Res. 59, 3576–3580.

    PubMed  CAS  Google Scholar 

  10. Shivapurkar, N., Virmani, A. K., Wistuba, II, et al. (1999) Deletions of chromosome 4 at multiple sites are frequent in malignant mesothelioma and small cell lung carcinoma. Clin. Cancer Res. 5, 17–23.

    PubMed  CAS  Google Scholar 

  11. Tannapfel, A., Benicke, M., Katalinic, A., et al. (2000) Frequency of p16(INK4A) alterations and K-ras mutations in intrahepatic cholangiocarcinoma of the liver. Gut 47, 721–727.

    Article  PubMed  CAS  Google Scholar 

  12. Werness, B. A., Parvatiyar, P., Ramus, S. J., et al. (2000) Ovarian carcinoma in situ with germline BRCA1 mutation and loss of heterozygosity at BRCA1 and TP53. J. Natl. Cancer Inst. 92, 1088–1091.

    Article  PubMed  CAS  Google Scholar 

  13. O’Farrell, P. Z. and Goodman, H. M. (1976) Resolution of simian virus 40 proteins in whole cell extracts by two-dimensional electrophoresis: heterogeneity of the major capsid protein. Cell 9, 289–298.

    Article  Google Scholar 

  14. Klose, J. (1975) Protein mapping by combined isoelectric focusing and electrophoresis of mouse tissues. A novel approach to testing for induced point mutations in mammals. Humangenetik 26, 231–243.

    PubMed  CAS  Google Scholar 

  15. Sanchez, J. C., Rouge, V., Pisteur, M., et al. (1997) Improved and simplified in-gel sample application using reswelling of dry immobilized pH gradients. Electrophoresis 18, 324–327.

    Article  PubMed  CAS  Google Scholar 

  16. Gorg, A., Obermaier, C., Boguth, G., et al. (2000) The current state of two-dimensional electrophoresis with immobilized pH gradients. Electrophoresis 21, 1037–1053.

    Article  PubMed  CAS  Google Scholar 

  17. Wildgruber, R., Harder, A., Obermaier, C., et al. (2000) Towards higher resolution: two-dimensional electrophoresis of Saccharomyces cerevisiae proteins using overlapping narrow immobilized pH gradients. Electrophoresis 21, 2610–2616.

    Article  PubMed  CAS  Google Scholar 

  18. Rabilloud, T., Adessi, C., Giraudel, A., and Lunardi, J. (1997) Improvement of the solubi-lization of proteins in two-dimensional electrophoresis with immobilized pH gradients. Electrophoresis 18, 307–316.

    Article  PubMed  CAS  Google Scholar 

  19. Santoni, V., Rabilloud, T., Doumas, P., et al. (1999) Towards the recovery of hydrophobic proteins on two-dimensional electrophoresis gels. Electrophoresis 20, 705–711.

    Article  PubMed  CAS  Google Scholar 

  20. Chevallet, M., Santoni, V., Poinas, A., et al. (1998) New zwitterionic detergents improve the analysis of membrane proteins by two-dimensional electrophoresis. Electrophoresis 19, 1901–1909.

    Article  PubMed  CAS  Google Scholar 

  21. Berggren, K., Chernokalskaya, E., Steinberg, T. H., et al. (2000) Background-free, high sensitivity staining of proteins in one-and two-dimensional sodium dodecyl sulfate-polyacry-lamide gels using a luminescent ruthenium complex. Electrophoresis 21, 2509–2521.

    Article  PubMed  CAS  Google Scholar 

  22. Vuong, G. L., Weiss, S. M., Kammer, W., et al. (2000) Improved sensitivity proteomics by postharvest alkylation and radioactive labelling of proteins. Electrophoresis 21, 2594–2605.

    Article  PubMed  CAS  Google Scholar 

  23. Blackstock, W. P. and Weir, M. P. (1999) Proteomics: quantitative and physical mapping of cellular proteins. Trends Biotechnol. 17, 121–127.

    Article  PubMed  CAS  Google Scholar 

  24. Humphery-Smith, I. (1998) Proteomics: from small genes to high-throughput robotics. J. Protein Chem. 17, 524–525.

    PubMed  CAS  Google Scholar 

  25. Biemann, K. (1992) Mass spectrometry of peptides and proteins. Annu. Rev. Biochem. 61, 977–1010.

    Article  PubMed  CAS  Google Scholar 

  26. Hunt, D. F., Yates, J. R., 3rd, Shabanowitz, J., Winston, S., and Hauer, C. R. (1986) Protein sequencing by tandem mass spectrometry. Proc. Natl. Acad. Sci. USA 83, 6233–6237.

    Article  PubMed  CAS  Google Scholar 

  27. Qin, J., Herring, C. J., and Zhang, X. (1998) De novo peptide sequencing in an ion trap mass spectrometer with 18O labeling. Rapid Commun. Mass Spectrom. 12, 209–216.

    Article  PubMed  CAS  Google Scholar 

  28. Jungblut, P. R., Zimny-Arndt, U., Zeindl-Eberhart, E., et al. (1999) Proteomics in human disease: cancer, heart and infectious diseases. Electrophoresis 20, 2100–2110.

    Article  PubMed  CAS  Google Scholar 

  29. Celis, J. E., Celis, P., Ostergaard, M., et al. (1999) Proteomics and immunohistochemistry define some of the steps involved in the squamous differentiation of the bladder transitional epithelium: a novel strategy for identifying metaplastic lesions. Cancer Res. 59, 3003–3009.

    PubMed  CAS  Google Scholar 

  30. Celis, J. E., Rasmussen, H. H., Vorum, H., et al. (1996) Bladder squamous cell carcinomas express psoriasin and externalize it to the urine. J. Urol. 155, 2105–2112.

    Article  PubMed  CAS  Google Scholar 

  31. Alaiya, A. A., Franzen, B., Auer, G., and Linder, S. (2000) Cancer proteomics: from identification of novel markers to creation of artifical learning models for tumor classification. Electrophoresis 21, 1210–1217.

    Article  PubMed  CAS  Google Scholar 

  32. Ornstein, D. K., Gillespie, J. W., Paweletz, C. P., et al. (2000) Proteomic analysis of laser capture microdissected human prostate cancer and in vitro prostate cell lines. Electrophoresis 21, 2235–2242.

    Article  PubMed  CAS  Google Scholar 

  33. Emmert-Buck, M. R., Gillespie, J. W., Paweletz, C. P., et al. (2000) An approach to proteomic analysis of human tumors. Mol. Carcinog. 27, 158–165.

    Article  PubMed  CAS  Google Scholar 

  34. Paweletz, C. P., Ornstein, D. K., Roth, M. J., et al. (2000) Loss of annexin 1 correlates with early onset of tumorigenesis in esophageal and prostate carcinoma. Cancer Res. 60, 6293–6297.

    PubMed  CAS  Google Scholar 

  35. Vercoutter-Edouart, A. S., Lemoine, J., Le Bourhis, X., et al. (2001) Proteomic analysis reveals that 14-3-3sigma is down-regulated in human breast cancer cells. Cancer Res. 61, 76–80.

    PubMed  CAS  Google Scholar 

  36. Araki, N., Morimasa, T., Sakai, T., et al. (2000) Comparative analysis of brain proteins from p53-deficient mice by two-dimensional electrophoresis. Electrophoresis 21, 1880–1889.

    Article  PubMed  CAS  Google Scholar 

  37. Minowa, T., Ohtsuka, S., Sasai, H., and Kamada, M. (2000) Proteomic analysis of the small intestine and colon epithelia of adenomatous polyposis coli gene-mutant mice by two-dimensional gel electrophoresis. Electrophoresis 21, 1782–1786.

    Article  PubMed  CAS  Google Scholar 

  38. Cole, A. R., Ji, H., and Simpson, R. J. (2000) Proteomic analysis of colonic crypts from normal, multiple intestinal neoplasia and p53-null mice: a comparison with colonic polyps. Electrophoresis 21, 1772–1781.

    Article  PubMed  CAS  Google Scholar 

  39. Merchant, M. and Weinberger, S. R. (2000) Recent advancements in surface-enhanced laser desorption/ionization–time of flight-mass spectrometry. Electrophoresis 21, 1164–1177.

    Article  PubMed  CAS  Google Scholar 

  40. Paweletz, C. P., Liotta, L. A., and Petricoin, E. F., 3rd. (2001) New technologies for biomarker analysis of prostate cancer progression: Laser capture microdissection and tissue proteomics. Urology 57, 160–163.

    Article  PubMed  CAS  Google Scholar 

  41. Paweletz, C. P., Gillespie, J. W., Ornstein, D. K., et al. (2000) Rapid protein display profiling of cancer progression directly from human tissue using protein biochip. Drug Develop. Res. 49, 34–42.

    Article  CAS  Google Scholar 

  42. Vlahou, A., Schellhammer, P. F., Mendrinos, S., et al. (2001) Development of a novel proteomic approach for the detection of transitional cell carcinoma of the bladder in urine. Am. J. Pathol. 158, 1491–1502.

    Article  PubMed  CAS  Google Scholar 

  43. Kononen, J., Bubendorf, L., Kallioniemi, A., et al. (1998) Tissue microarrays for high-throughput molecular profiling of tumor specimens. Nat. Med. 4, 844–847.

    Article  PubMed  CAS  Google Scholar 

  44. Schraml, P., Kononen, J., Bubendorf, L., et al. (1999) Tissue microarrays for gene amplification surveys in many different tumor types. Clin. Cancer Res. 5, 1966–1975.

    PubMed  CAS  Google Scholar 

  45. Barlund, M., Forozan, F., Kononen, J., et al. (2000) Detecting activation of ribosomal protein S6 kinase by complementary DNA and tissue microarray analysis. J. Natl. Cancer Inst. 92, 1252–1259.

    Article  PubMed  CAS  Google Scholar 

  46. Bubendorf, L., Kononen, J., Koivisto, P., et al. (1999) Survey of gene amplifications during prostate cancer progression by high-throughout fluorescence in situ hybridization on tissue microarrays Cancer Res. 59, 803–806.

    PubMed  CAS  Google Scholar 

  47. Richter, J., Wagner, U., Kononen, J., et al. (2000) High-throughput tissue microarray analysis of cyclin E gene amplification and overexpression in urinary bladder cancer. Am. J. Pathol. 157, 787–794.

    Article  PubMed  CAS  Google Scholar 

  48. Bowen, C., Bubendorf, L., Voeller, H. J., et al. (2000) Loss of NKX3.1 expression in human prostate cancers correlates with tumor progression. Cancer Res. 60, 6111–6115.

    PubMed  CAS  Google Scholar 

  49. Cahill, D. J. (2001) Protein and antibody arrays and their medical applications. J. Immunol. Meth. 250, 81–91.

    Article  CAS  Google Scholar 

  50. Kodadek, T. (2001) Protein microarrays: prospects and problems. Chem. Biol. 8, 105–115.

    Article  PubMed  CAS  Google Scholar 

  51. Emili, A. Q. and Cagney, G. (2000) Large-scale functional analysis using peptide or protein arrays. Nat. Biotechnol. 18, 393–397.

    Article  PubMed  CAS  Google Scholar 

  52. MacBeath, G. and Schreiber, S. L. (2000) Printing proteins as microarrays for high-throughput function determination. Science 289, 1760–1763.

    PubMed  CAS  Google Scholar 

  53. Lueking, A., Horn, M., Eickhoff, H., Bussow, K., Lehrach, H., and Walter, G. (1999) Protein microarrays for gene expression and antibody screening. Anal. Biochem. 270, 103–111.

    Article  PubMed  CAS  Google Scholar 

  54. Bichsel, V. E., Liotta, L. A., and Petricoin, E. F., 3rd. (2001) Cancer proteomics: from biomarker discovery to signal pathway profiling. Cancer J. 7, 69–78.

    PubMed  CAS  Google Scholar 

  55. Paweletz, C. P., Charboneau, L., Bichsel, V. E., et al. (2001) Reverse phase protein microarrays which capture disease progression show activation of pro-survival pathways at the cancer invasion front. Oncogene 20, 1981–1989.

    Article  PubMed  CAS  Google Scholar 

  56. Fields, S. and Song, O. (1989) A novel genetic system to detect protein-protein interactions. Nature 340, 245–246.

    Article  PubMed  CAS  Google Scholar 

  57. Li, B. and Fields, S. (1993) Identification of mutations in p53 that affect its binding to SV40 large T antigen by using the yeast two-hybrid system. FASEB J. 7, 957–963.

    PubMed  CAS  Google Scholar 

  58. Iwabuchi, K., Li, B., Bartel, P., and Fields, S. (1993) Use of the two-hybrid system to identify the domain of p53 involved in oligomerization. Oncogene 8, 1693–1696.

    PubMed  CAS  Google Scholar 

  59. Kasof, G. M., Goyal, L., and White, E. (1999) Btf, a novel death-promoting transcriptional repressor that interacts with Bcl-2-related proteins. Mol. Cell. Biol. 19, 4390–4404.

    PubMed  CAS  Google Scholar 

  60. Gronholm, M., Sainio, M., Zhao, F., Heiska, L., Vaheri, A., and Carpen, O. (1999) Homotypic and heterotypic interaction of the neurofibromatosis 2 tumor suppressor protein merlin and the ERM protein ezrin. J. Cell Sci. 112, 895–904.

    PubMed  CAS  Google Scholar 

  61. Sharan, S. K. and Bradley, A. (1998) Functional characterization of BRCA1 and BRCA2: clues from their interacting proteins. J. Mammary Gland Biol. Neoplasia 3, 413–421.

    Article  PubMed  CAS  Google Scholar 

  62. Marston, N. J., Richards, W. J., Hughes, D., Bertwistle, D., Marshall, C. J., and Ashworth, A. (1999) Interaction between the product of the breast cancer susceptibility gene BRCA2 and DSS1, a protein functionally conserved from yeast to mammals. Mol. Cell. Biol. 19, 4633–4642.

    PubMed  CAS  Google Scholar 

  63. Little, N. A., Hastie, N. D., and Davies, R. C. (2000) Identification of WTAP, a novel Wilms’ tumour 1-associating protein. Hum. Mol. Genet. 9, 2231–2239.

    Article  PubMed  CAS  Google Scholar 

  64. Wu, X., Hepner, K., Castelino-Prabhu, S., et al. (2000) Evidence for regulation of the PTEN tumor suppressor by a membrane-localized multi-PDZ domain containing scaffold protein MAGI-2. Proc. Natl. Acad. Sci. USA 97, 4233–4238.

    Article  PubMed  CAS  Google Scholar 

  65. Durfee, T., Mancini, M. A., Jones, D., Elledge, S. J., and Lee, W. H. (1994) The amino-terminal region of the retinoblastoma gene product binds a novel nuclear matrix protein that co-localizes to centers for RNA processing. J. Cell Biol. 127, 609–622.

    Article  PubMed  CAS  Google Scholar 

  66. Yang, R., Gombart, A. F., Serrano, M., and Koeffler, H. P. (1995) Mutational effects on the p16INK4a tumor suppressor protein. Cancer Res. 55, 2503–2506.

    PubMed  CAS  Google Scholar 

  67. Su, L. K., Burrell, M., Hill, D. E., et al. (1995) APC binds to the novel protein EB1. Cancer Res. 55, 2972–2977.

    PubMed  CAS  Google Scholar 

  68. Persson, B. (2000) Bioinformatics in protein analysis. EXS 88, 215–231.

    PubMed  CAS  Google Scholar 

  69. Celis, J. E., Gromov, P., Ostergaard, M., et al. (1996) Human 2-D PAGE databases for proteome analysis in health and disease: http://biobase.dk/cgi-bin/celis. FEBS Lett. 398, 129–134.

    Article  PubMed  CAS  Google Scholar 

  70. O’Donovan, C., Apweiler, R., and Bairoch, A. (2001) The human proteomics initiative (HPI). Trends Biotechnol. 19, 178–181.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Humana Press Inc.

About this protocol

Cite this protocol

Ahram, M., Emmert-Buck, M.R. (2003). Approaches to Proteomic Analysis of Human Tumors. In: El-Deiry, W.S. (eds) Tumor Suppressor Genes. Methods in Molecular Biology™, vol 222. Humana Press, Totowa, NJ. https://doi.org/10.1385/1-59259-328-3:375

Download citation

  • DOI: https://doi.org/10.1385/1-59259-328-3:375

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-0-89603-986-5

  • Online ISBN: 978-1-59259-328-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics