Skip to main content

Hemoglobin Fluorescence

  • Protocol
Hemoglobin Disorders

Part of the book series: Methods in Molecular Biology™ ((MIMM,volume 82))

Abstract

Protein structural analysis took a big leap forward with the discovery of aromatic amino acid and protein fluorescence (14). The intrinsic fluorescence of proteins is a highly sensitive reporter of conformational change at or near the fluorescent tryptophans (Trp) and tyrosines (Tyr). Phenylalanine also exhibits ultraviolet (UV) fluorescence excitation and emission, with a low quantum yield that becomes insignificant in proteins containing Tyr and Trp. The binding of specific extrinsic fluorescent probes allows the site-specific probing of other microdomains or nonfluorescent side chains. Fluorescence resonance energy transfer measurements serve as a “spectroscopic ruler” to measure intramolecular and intermolecular distances and may also be used to ascertain the magnitude of conformational change on ligand binding, protein folding, and protein-protein interactions ([5]; for basic principles of fluorescence, see ref. 6).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Weber, G. (1953) Rotational brownian motion and polarization of the fluorescence of solutions. Adv. Protein. Chem. 8, 415–459.

    Article  PubMed  CAS  Google Scholar 

  2. Teale, F. W. J. and Weber, G. (1957) Ultraviolet fluorescence of the aromatic amino acids. Biochem. J. 65, 476–482.

    PubMed  CAS  Google Scholar 

  3. Teale, F. W. J. and Weber, G. (1959) Ultraviolet fluorescence of proteins. Biochem. J. 72, 156.

    Google Scholar 

  4. Teale, F. W. J. (1960) The ultraviolet fluorescence of proteins in neutral solution. Biochem. J. 76, 381–388.

    PubMed  CAS  Google Scholar 

  5. Stryer L. (1978) Fluorescence energy transfer as a spectroscopic ruler. Annu. Rev. Biochem. 47, 819–846.

    Article  PubMed  CAS  Google Scholar 

  6. Lakowicz, J. R. (1999) Principles of Fluorescence Spectroscopy, 2nd ed., Kluwer Academic/Plenum, New York.

    Google Scholar 

  7. Weber, G. and Teale, F. W. J. (1959) Electronic energy transfer in haem proteins. Disc. Faraday Soc. 28, 134–141.

    Article  Google Scholar 

  8. Nagel, R. L. and Gibson, Q. H. (1967) Kinetics and mechanism of complex formation between hemoglobin and haptoglobin. J. Biol. Chem. 242, 3428–3434.

    CAS  Google Scholar 

  9. Nagel, R. L. and Gibson, Q. H. (1971) The binding of hemoglobin to haptoglobin and its relation to subunit dissociation of hemoglobin. J. Biol. Chem. 246, 69–73.

    PubMed  CAS  Google Scholar 

  10. Benesch, R. E., Ikeda, S., and Benesch, R. (1976) Reaction of haptoglobin with hemoglobin covalently cross-linked between the alpha beta dimers. J. Biol. Chem. 251, 465–470.

    PubMed  CAS  Google Scholar 

  11. Marden, M. C., Hazard, E. S., and Gibson, Q. H. (1986) Testing the two-state model: anomalous effector binding to human hemoglobin. Biochemistry 25, 7591–7596.

    Article  PubMed  CAS  Google Scholar 

  12. Alpert, B. and Lopez-Delgado, R. (1976) Fluorescence lifetimes of haem proteins excited into the tryptophan absorption band with synchrotron radiation. Nature 263, 445, 446.

    Article  PubMed  CAS  Google Scholar 

  13. Alpert, B., Jameson, D., and Weber, G. (1980) Tryptophan emission from human hemoglobin and its isolated subunits. Photochem. Photobiol. 31, 1–4.

    Article  PubMed  CAS  Google Scholar 

  14. Hirsch, R. E., Zukin, R. S., and Nagel, R. L. (1980) Intrinsic fluorescence emission of intact oxy hemoglobins. Biochem. Biophys. Res. Commun. 93, 432–439.

    Article  PubMed  CAS  Google Scholar 

  15. Gryczynski, Z., Tenenholz, T., and Bucci, E. (1992) Rates of energy transfer between tryptophans and hemes in hemoglobin, assuming that the heme is a planar oscillator. Biophys. J. 63, 648–653.

    Article  PubMed  CAS  Google Scholar 

  16. Hirsch, R. E. (1994) Front-face fluorescence spectroscopy of hemoglobins. Methods Enzymol. 232, 231–246.

    Article  PubMed  CAS  Google Scholar 

  17. Hirsch, R. E. (2000) Heme protein fluorescence, in Topics in Fluorescence Spectroscopy, vol. 6, Protein Fluorescence (Lakowicz, J. R., ed.), Kluwer Academic/Plenum, New York, pp. 221–255.

    Google Scholar 

  18. Fontaine, M. P., Jameson, D. M., and Alpert, B. (1980) Tryptophan-heme energy transfer in human hemoglobin: dependence upon the state of the iron. FEBS Lett. 116, 310–314.

    Article  PubMed  CAS  Google Scholar 

  19. Eisinger, J. and Flores, J. (1979) Front-face fluorometry of liquid samples. Analytical Biochem. 94, 15–21.

    Article  CAS  Google Scholar 

  20. Bucci, E., Malak, H., Fronticelli, C., Gryczynski, I., Laczko, G., and Lakowicz, J. R. (1988) Time-resolved emission spectra of hemoglobin on the picosecond time-scale. Biol. Chem. 32, 187–198.

    CAS  Google Scholar 

  21. Horiuchi, K. and Asai, H. (1980) Binding of β-naphthyl triphosphate to human adult hemoglobin accompanying deoxygenation. Investigated by simultaneous measurements of fluorescence, absorbance and partial pressure of oxygen. Eur. J. Biochem. 131, 613–618.

    Article  Google Scholar 

  22. Asakura, T., Agarwal, P. I., Relman, D. A., McCray, J. A., Chance, B., Schwartz, E., Friedman, S., and Lubin, B. (1973) Mechanical instability of the oxy-form of sickle haemoglobin. Nature 244, 437–438.

    Article  PubMed  CAS  Google Scholar 

  23. Bucci, E., Gryczynski, Z., Fronticelli, C., Gryczynski, I., and Lakowicz, J. R. (1992) Fluorescence intensity and anisotropy decays of the intrinsic tryptophan emission of hemoglobin measured with a 10-Ghz fluorometer using front-face geometry on a free liquid surface. J. Fluorescence 2, 29–36.

    Article  CAS  Google Scholar 

  24. Gryczynski, Z. and Bucci, E. (1993) A new front-face optical cell for measuring weak fluorescent emissions with time resolution in the picosecond time scale. Biophys. Chem. 48, 31–38.

    Article  PubMed  CAS  Google Scholar 

  25. Elbaum, D., Harrington, J., Roth, E. F. Jr., and Nagel, R. L. (1976) Surface activity of hemoglobin S and other human hemoglobin variants. Biochim. Biophys. Acta 427, 57–69.

    PubMed  CAS  Google Scholar 

  26. Hirsch, R. E., Elbaum, D., Brody, S. S., and Nagel, R. L. (1980) Hemoglobin-A and Hemoglobin-S films at an air-water interface: absorption spectra studies. J. Colloid. Interface Sci. 78, 212–216.

    Article  CAS  Google Scholar 

  27. Antonini, E. and Brunori, M. (1971) Hemoglobin and Myoglobin in Their Reactions with Ligands. North Holland, Amsterdam.

    Google Scholar 

  28. Sassaroli, M., Bucci, E., Leisegang, J., Fronticelli, C., and Steiner, R. F. (1984) Specialized functional domains in hemoglobin: dimensions in solution of the apohemoglobin dimer labeled with fluorescein iodoacetamide. Biochemistry 23, 2487–2491.

    Article  PubMed  CAS  Google Scholar 

  29. Hirsch, R. E. and Peisach, J. (1986) A comparison of the intrinsic fluorescence of red kangaroo, horse and sperm whale met-myoglobins. Biochim. Biophys. Acta 872, 147–153.

    Article  PubMed  CAS  Google Scholar 

  30. Gryczynski, Z., Lubkowski, J., and Bucci, E. (1997) Intrinsic fluorescence of hemoglobins and myoglobins. Methods Enzymol. 278, 38–69.

    Google Scholar 

  31. Blumberg, W. E., Eisinger, J., Lamola, A. A., and Zuckerman, D. M. (1977) The hematofluorometer. Clin. Chem. 23(2 Pt. 1), 270–274.

    PubMed  CAS  Google Scholar 

  32. Blumberg, W. E., Doleiden, F. H., and Lamola, A. A. (1980) Hemoglobin determined in 15 microL of whole blood by “front-face” fluorometry. Clin. Chem. 26, 409–413.

    PubMed  CAS  Google Scholar 

  33. Lamola, A. A. (1981) Fluorescence methods in the diagnosis and management of diseases of tetrapyrrole metabolism. J. Invest. Dermatol. 77, 114–121

    Article  PubMed  CAS  Google Scholar 

  34. Cashore, W. J., Oh, W., Blumberg, W. E., Eisinger, J., and Lamola, A. A. (1980) Rapid fluorometric assay of bilirubin and bilirubin binding capacity in blood of jaundiced neonates: comparisons with other methods. Pediatrics 66, 411–416.

    PubMed  CAS  Google Scholar 

  35. Hirsch, R. E., Lin, M. J., and Park, C. M. (1989) The interaction of zinc protopor-phyrin with intact oxy hemoglobin. Biochemistry 28, 1851–1855.

    Article  PubMed  CAS  Google Scholar 

  36. Hirsch, R. E., Pulakhandam, U. R., Billett, H. H., and Nagel, R. L. (1991) Blood zinc protoporphyrin is elevated only in sickle cell patients with low fetal hemoglobin. Am. J. Hematol. 36, 147–149.

    Article  PubMed  CAS  Google Scholar 

  37. Park, C. M, Pulakhandan, U. R., and Hirsch, R. E. (l986) The interference of fluorescent drugs with the determination of zinc protoporphyrin levels in humans: The case of tetracycline. Clin. Res. 34(2), 466A.

    Google Scholar 

  38. Hirsch, R. E., Lin, M. J., and Das, K. M. (1990) The estimation of 5-aminosalicylic acid and its metabolite in human serum by front-face fluorometry: a simple and sensitive method. J. Lab. Clin. Med. 116, 45–50.

    PubMed  CAS  Google Scholar 

  39. Ritland, S. R., Leighton, J. A., Hirsch, R. E., Morrow, J. D., and Gendler, S. J. (1999) Evaluation of 5-aminosalicylic acid (5-ASA) for cancer chemoprevention: Absence of efficacy against nascent adenomatous polyps in the ApcMin mouse. Clin. Cancer Res. 5, 855–863.

    PubMed  CAS  Google Scholar 

  40. Eisinger, J. (1969) Intramolecular energy transfer in adrenocorticotropin. Biochemistry 8, 3902–3908.

    Article  PubMed  CAS  Google Scholar 

  41. Burstein, E.A, Vedenkina, N. S., and Ivkova, M. N. (1973) Fluorescence and the location of tryptophan residues in protein molecules. Photochem. Photobiol. 18, 263–279.

    Article  PubMed  CAS  Google Scholar 

  42. Vivien, J. T. and Callis, P. R. (2001) Tryptophan fluorescence shift mechanisms in proteins: simulation study of Trp rotational conformers. Biophys. J. 80(Pt. 1), 362a.

    Google Scholar 

  43. Kim, H. W., Shen, T. J., Ho, N. T., Zou, M., Tam, M. F., and Ho, C. (1995) A novel low oxygen affinity recombinant hemoglobin (α96 Val→Trp): switching quaternary structure without changing the ligation state. J. Mol. Biol. 248, 867–882.

    Article  PubMed  CAS  Google Scholar 

  44. Puius, Y. A., Zou, M., Ho, N. T., Ho, C, and Almo, S. C. (1998) Novel water mediated hydrogen bonds as the structural basis for the low oxygen affinity of the blood substitute candidate rHb (α96 Val→Trp). Biochem. USA 37, 9258–9265.

    Article  CAS  Google Scholar 

  45. Hirsch, R. E. and Noble, R. W. (l987) Intrinsic fluorescence of carp hemoglobin: A study of the R→T transition. Biochim. Biophys. Acta 914, 213–219.

    Article  PubMed  CAS  Google Scholar 

  46. Williams, R. T. and Bridges J. W. (1964) Fluorescence of solutions: A review. J. Clin. Pathol. 17, 371–394.

    Article  PubMed  CAS  Google Scholar 

  47. Hirsch, R. E., Lin, M. J., Vidugiris, G. J., Huang, S., Friedman, J. M., and Nagel, R. L. (1996) Conformational changes in oxyhemoglobin C (β6 Glu→Lys) detected by spectroscopic probing. J. Biol. Chem. 271, 372–375.

    Article  PubMed  CAS  Google Scholar 

  48. Hirsch, R. E., Juszczak, L. J., Fataliev, N. A., Friedman, J. M., and Nagel, R. L. (1999) Solution-active structural alterations in liganded hemoglobins C (β6 Glu→Lys) and S (β6 Glu→Val). J. Biol. Chem. 274, 13,777–13,782.

    Article  PubMed  CAS  Google Scholar 

  49. Sokolov, L. and Mukerji, I. (1998) Conformational changes in FmetHbS probes with UV resonance Raman and fluorescence spectroscopic methods. J. Phys. Chem. B. 102, 8314–8319.

    Article  CAS  Google Scholar 

  50. Juszczak, LJ, Hirsch, R. E., Nagel, R. L., and Friedman, J. M. (1998) Conformational differences in CO derivatives of HbA, HbC (E 6K) and HbS (E 6V) in the presence and absence of inositol hexaphosphate (IHP) detected using ultraviolet resonance Raman spectroscopy. J Raman Spectrosc. 29, 963–968.

    Article  CAS  Google Scholar 

  51. Wajcman, H., Kister, J., Galacteros, F., Spielvogel, A., Lin, M. J., Vidugiris, G J. A., Hirsch, R. E., Friedman, J. M., and Nagel, R. L. (1996) Hb Montefiore [α126(H9)Asp→Tyr]: high oxygen affinity and loss of cooperativity secondary to C-terminal disruption. J. Biol. Chem. 271, 22,990–22,998.

    Article  PubMed  CAS  Google Scholar 

  52. Mehanna, A. S. and Abraham, D. J. (1990) Comparison of crystal and solution hemoglobin binding of selected antigelling agents and allosteric modifiers. Biochemistry 29, 3944–3952.

    Article  PubMed  CAS  Google Scholar 

  53. Hirsch, R. E., Juszcak, L. J., Abraham, D. J., Friedman, J. M., and Nagel, R. L. (1997) Further evidence for solution-active structural differences in the β6 mutants HbC and HbS. Blood 90(10, Suppl. 1, Pt. 1), 126a.

    Google Scholar 

  54. Mizukoshi, H., Itoh, M., Matsukawa, S., Mawatari, K., and Yoneyama, Y. (1982) Tryptophan fluorescence of human hemoglobin. II. Effect of inositol hexaphosphate on the T-R transition. Biochim. Biophys. Acta 700, 143–147.

    Article  PubMed  CAS  Google Scholar 

  55. Chen, Q. Y., Bonaventura, C., Nagel, R. L., and Hirsch, R. E. (2002) Distinct domain responses of R-state human hemoglobins A, C, and S to anions. Blood Cells Mol Dis. 29, 119–132.

    Article  PubMed  Google Scholar 

  56. Hirsch, R. E., and Nagel, R. L. (1989) Stopped-flow front-face fluorometer: a prototype design to measure hemoglobin R→T transition kinetics. Anal. Biochem. 176, 19–21.

    Article  PubMed  CAS  Google Scholar 

  57. Hirsch, R. E. and Nagel, R. L. (1981) Conformational studies of hemoglobins using intrinsic fluorescence measurements. J. Biol. Chem. 256, 1080–1083.

    PubMed  CAS  Google Scholar 

  58. Nagababu, E. and Rifkind, J. M. (1998) Formation of fluorescent heme degradation products during the oxidation of hemoglobin by hydrogen peroxide. Biochem. Biophys. Res. Commun. 247, 592–596.

    Article  PubMed  CAS  Google Scholar 

  59. Nagababu, E. and Rifkind, J. M. (2000) Heme degradation during autooxidation of oxyhemoglobin. Biochem. Biophys. Res. Commun. 273, 839–845.

    Article  PubMed  CAS  Google Scholar 

  60. Nagababu, E., Chrest, F. J., and Rifkind, J. M. (2000) The origin of red cell fluorescence caused by hydrogen peroxide treatment. Free Radic. Biol. Med. 29, 659–663.

    Article  PubMed  CAS  Google Scholar 

  61. Ackers, G. K., Johnson, M. L., Mills, F. C., and Ip, S. H. (1976) Energetics of oxygenation-linked subunit interactions in human hemoglobin. Biochem. Biophys. Res. Commun. 69, 135–142.

    Article  PubMed  CAS  Google Scholar 

  62. Imai, K. (1982) Allosteric Effects in Hemoglobin, Cambridge University Press, New York.

    Google Scholar 

  63. Bunn, H. F. and Forget, B. G. (1986) Hemoglobin: Molecular, Genetic and Clinical Aspects, W. B. Saunders, Philadelphia.

    Google Scholar 

  64. Herskovits, T. T., Cavanagh, S. M., and San George, R. C. (1977) Light-scattering investigations of the subunit dissociation of human hemoglobin A: effects of various neutral salts. Biochemistry 16, 5795–5801.

    Article  PubMed  CAS  Google Scholar 

  65. Chothia, C., Wodak, S., and Janin, J. (1976) Role of subunit interfaces in the allosteric mechanism of hemoglobin. Proc. Natl. Acad. Sci. USA 73, 3793–3797.

    Article  PubMed  CAS  Google Scholar 

  66. Hirsch, R. E., Squires, N. A., Discepola, C., and Nagel, R. L. (1983) The detection of hemoglobin dimers by fluorescence. Biochem. Biophys. Res. Commun. 116, 712–718.

    Article  PubMed  CAS  Google Scholar 

  67. Pin, S. and Royer, C. A. (1994) High-pressure fluorescence methods for observing subunit dissociation in hemoglobin. Methods Enzymol. 232, 42–55.

    Article  PubMed  CAS  Google Scholar 

  68. Marden, M. C., Hoa, G. H. B., and Stetzkowski-Marden, F. (1986) Heme protein fluorescence versus pressure. Biophys. J. 49, 619–627.

    Article  PubMed  CAS  Google Scholar 

  69. Silva, J. L., Villas-Boas, M., Bonafe, C. F. S., and Meirelles, N. C. (1989) Anomalous pressure dissociation of large protein aggregates. J. Biol. Chem. 264, 15,863–15,868.

    PubMed  CAS  Google Scholar 

  70. Pin, S., Royer, C. A., Gratton, E., Alpert, B., and Weber, G. (1990) Subunit interactions in hemoglobin probed by fluorescence and high-pressure techniques. Biochemistry 29, 9194–9202.

    Article  PubMed  CAS  Google Scholar 

  71. Hirsch, R. E., Harrington, J. P., and Scarlata, S. F. (1993) The differential effects of carbon dioxide and oxygen on the pressure dissociation of Lumbricus terrestris hemoglobin. Biochim. Biophys. Acta 1161, 285–290.

    Article  PubMed  CAS  Google Scholar 

  72. Hirsch, R. E., Friedman, J. M., Harrington, J. R., and Scarlata, S. F. (1994) Stability of a potential blood substitute, HbXL99α under high pressure. Biochem. Biophys. Res. Commun. 200, 1635–1640.

    Article  PubMed  CAS  Google Scholar 

  73. Sharma, V. S., Newton, G. L., Ranney, H. M., Ahmed, F., Harris, J. W., and Danish, E. H. (1980) Hemoglobin Rothschild β 37(C3)Trp replaced by Arg): A high/low affinity hemoglobin mutant. J. Mol. Biol. 144, 267–280.

    Article  PubMed  CAS  Google Scholar 

  74. Hirsch, R. E., Zukin, R. S., and Nagel, R. L. (1986) Steady-state fluorescence emission from the fluorescent probe, 5-iodoacetamidofluorescein, bound to hemoglobin. Biochem. Biophys. Res. Commun. 138, 489–495.

    Article  PubMed  CAS  Google Scholar 

  75. MacQuarrie, R. and Gibson, Q. H. (1971) Use of a fluorescent analogue of 2,3-diphosphoglycerate as a probe of human hemoglobin conformation during carbon monoxide binding. J. Biol. Chem. 246, 5832–5835.

    PubMed  CAS  Google Scholar 

  76. MacQuarrie, R. and Gibson, Q. H. (1972) Ligand binding and release of an analogue of 2,3-diphosphoglycerate from human hemoglobin. J. Biol. Chem. 247, 5686–5694.

    PubMed  CAS  Google Scholar 

  77. Serbanescu, R., Kiger, L., Poyart, C, and Marden, M. C. (1998) Fluorescent effector as a probe of the allosteric equilibrium in methemoglobin. Biochim. Biophys. Acta 1363, 79–84.

    Article  PubMed  CAS  Google Scholar 

  78. Gottfried, D. S., Juszczak, L. J., Fataliev, N. A., Acharya, A. S., Hirsch, R. E., and Friedman, J. M. (1997) Probing the hemoglobin central cavity by direct quantification of effector binding using fluorescence lifetime methods. J. Biol. Chem. 272, 1571–1578.

    Article  PubMed  CAS  Google Scholar 

  79. Gottfried, D. S., Manjula, B. N., Malavalli, A, Acharya, A. S., and Friedman, J. M. (1999) Probing the diphosphoglycerate binding pocket of HbA and HbPresbyterian (β 108 Asn→Lys). Biochemistry 38, 11,307–11,315.

    Article  PubMed  CAS  Google Scholar 

  80. Schroeder, W. A. and Huisman, T. H. J. (1980) The Chromatography of Hemoglobin, Marcel, Dekker, New York.

    Google Scholar 

  81. White, A. (1959) Effect of pH on fluorescence of tyrosine, tryptophan, and related compounds. Biochem. J. 71, 217–220.

    PubMed  CAS  Google Scholar 

  82. Lin, M. J., Rao, M. J., Friedman, J. M., Acharya, A. S., and Hirsch, R. E. (1991) Inositol hexaphosphate induced pH sensitive conformational changes of the α1β2 interface of hemoglobin. Biophys. J. 59(2), 290a.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Humana Press Inc.

About this protocol

Cite this protocol

Hirstch, R.E. (2003). Hemoglobin Fluorescence. In: Nagel, R.L. (eds) Hemoglobin Disorders. Methods in Molecular Biology™, vol 82. Humana Press. https://doi.org/10.1385/1-59259-373-9:133

Download citation

  • DOI: https://doi.org/10.1385/1-59259-373-9:133

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-962-9

  • Online ISBN: 978-1-59259-373-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics