Skip to main content

Screening for Thermostability

  • Protocol
Directed Enzyme Evolution

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 230))

Abstract

Enzyme thermostability is a property of great importance in the era of designed biocatalysts. While enzymes are capable of catalyzing reactions with exquisite specificity and selectivity, they are often limited by insufficient stability. Improvements in enzyme activity through protein engineering often come at the cost of reduced stability. This is likely a result of both natural drift and a tradeoff that often exists between activity and stability for many single residue substitutions (1). However, as exemplified by thermophilic organisms (2,3) and demonstrated by laboratory evolution (46), it is often possible to improve enzyme stability without sacrificing activity. Thus, enzyme thermostability is an attractive optimization target in bioengineering.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shoichet, B. K., Baase, W. A., Kuroki, R., and Matthews, B. W. (1995) A relationship between protein stability and protein function. Proc. Natl. Acad. Sci. USA 92, 452–456.

    Article  PubMed  CAS  Google Scholar 

  2. Wintrode, P. L. and Arnold, F. H. (2001) Temperature adaptation of enzymes: lessons from laboratory evolution, in: Evolutionary Protein Design (Arnold, F. H., ed.), vol. 55, Academic Press, San Diego, CA, pp. 161–225.

    Chapter  Google Scholar 

  3. Jaenicke, R. and Bohm, G. (1998) The stability of proteins in extreme environments. Curr. Opin. Struct. Biol. 8, 738–748.

    Article  PubMed  CAS  Google Scholar 

  4. Miyazaki, K., Wintrode, P. L., Grayling, R. A., Rubingh, D. N., and Arnold, F. H. (2000) Directed evolution study of temperature adaptation in a psychrophilic enzyme. J. Mol. Biol. 297, 1015–1026.

    Article  PubMed  CAS  Google Scholar 

  5. Song, J. K. and Rhee, J. S. (2000) Simultaneous enhancement of thermostability and catalytic activity of phospholipase A(1) by evolutionary molecular engineering. Appl. Environ. Microbiol. 66, 890–894.

    Article  PubMed  CAS  Google Scholar 

  6. Zhao, H. and Arnold, F. H. (1999) Directed evolution converts subtilisin E into a functional equivalent of thermitase. Protein Eng. 12, 47–53.

    Article  PubMed  CAS  Google Scholar 

  7. Giver, L., Gershenson, A., Freskgard, P. O., and Arnold, F. H. (1998) Directed evolution of a thermostable esterase. Proc. Natl. Acad. Sci. USA 95, 12,809–12,813.

    Article  PubMed  CAS  Google Scholar 

  8. Morawski, B., Quan, S., and Arnold, F. H. (2001) Functional expression and stabilization of horseradish peroxidase by directed evolution in Saccharomyces cerevisiae. Biotechnol. Bioeng. 76, 99–107.

    Article  PubMed  CAS  Google Scholar 

  9. Gray, K. A., Richardson, T. H., Kretz, K., et al. (2001) Rapid evolution of reversible denaturation and elevated melting temperature in a microbial haloalkane dehalogenase. Adv. Synth. Catal. 343, 607–617.

    Article  CAS  Google Scholar 

  10. Barnes, H. J., Arlotto, M. P., and Waterman, M. R. (1991) Expression and enzymatic activity of recombinant cytochrome P450 17 alpha-hydroxylase in Escherichia coli. Proc. Natl. Acad. Sci. USA 88, 5597–5601.

    Article  PubMed  CAS  Google Scholar 

  11. Joo, H., Arisawa, A., Lin, Z., and Arnold, F. H. (1999) A high-throughput digital imaging screen for the discovery and directed evolution of oxygenases. Chem. Biol. 6, 699–706.

    Article  PubMed  CAS  Google Scholar 

  12. Schwaneberg, U., Schmidt-Dannert, C., Schmitt, J., and Schmid, R. D. (1999) A continuous spectrophotometric assay for P450 BM-3, a fatty acid hydroxylating enzyme, and its mutant F87A. Anal. Biochem. 269, 359–366.

    Article  PubMed  CAS  Google Scholar 

  13. Josephy, P. D., Eling, T., and Mason, R. P. (1982) The horseradish peroxidase-catalyzed oxidation of 3,5,3′,5′-tetramethylbenzidine—Free-radical and charge-transfer complex intermediates. J. Biol. Chem. 257, 3669–3675.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Cirino, P.C., Georgescu, R. (2003). Screening for Thermostability. In: Arnold, F.H., Georgiou, G. (eds) Directed Enzyme Evolution. Methods in Molecular Biology™, vol 230. Humana Press. https://doi.org/10.1385/1-59259-396-8:117

Download citation

  • DOI: https://doi.org/10.1385/1-59259-396-8:117

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-286-5

  • Online ISBN: 978-1-59259-396-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics