Skip to main content

Selection of Heat-Stable Clostridium cellulovorans Cellulases After In Vitro Recombination

  • Protocol
Directed Enzyme Evolution

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 230))

  • 1874 Accesses

Abstract

Cellulases degrade cellulose, which is the most abundant biological polymer on the earth (1). Although the chemical composition of cellulose is very simple, consisting of only glucose residues connected by β-1,4-glycosidic bonds, no single enzyme is able to degrade crystalline cellulose. To degrade crystalline cellulose to glucose, at least three enzymes have to cooperate: endoglucanase (EC 3.2.1.4), exoglucanase (cellobiohydrolase, EC 3.2.1.91), and β-glucosidase (EC 3.2.1.21) (1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    *

    Sterilize before use

  2. 2.

    *

    Sterilize before use

  3. 3.

    *

    Sterilize before use

  4. 4.

    *

    Sterilize before use

References

  1. Schwarz, W. H. (2001) The cellulosome and cellulose degradation by anaerobic bacteria. Appl. Microbiol. Biotechnol. 56, 634–649.

    Article  PubMed  CAS  Google Scholar 

  2. Lynd, L. R., Cushman, J. H., Nichols, R. J., and Wyman, C. E. (1991) Fuel ethanol from cellulosic biomass. Science 251, 1318–1323.

    Article  PubMed  CAS  Google Scholar 

  3. Azevedo, H., Bishop, D., and Cavaco-Paulo, A. (2000) Effects of agitation level on the adsorption, desorption, and activities on cotton fabrics of full length and core domains of EGV (Humicola insolens) and CenA (Cellulomonas fimi). Enzyme Microb. Technol. 27, 325–329.

    Article  PubMed  CAS  Google Scholar 

  4. Ito, S. (1997) Alkaline cellulases from alkaliphilic Bacillus: enzymatic properties, genetics, and application to detergents. Extremophiles 1, 61–66.

    Article  PubMed  Google Scholar 

  5. Doi, R. H., Park, J. S., Liu, C. C., et al. (1998) Cellulosome and noncellulosomal cellulases of Clostridium cellulovorans. Extremophiles 2, 53–60.

    Article  PubMed  CAS  Google Scholar 

  6. Shoseyov, O. and Doi, R. H. (1990) Essential 170-kDa subunit for degradation of crystalline cellulose by Clostridium cellulovorans cellulase. Proc. Natl. Acad. Sci. USA 87, 2192–2195.

    Article  PubMed  CAS  Google Scholar 

  7. Tamaru, Y., Karita, S., Ibrahim, A., Chan, H., and Doi, R. H. (2000) A large gene cluster for the Clostridium cellulovorans cellulosome. J. Bacteriol. 182, 5906–5910.

    Article  PubMed  CAS  Google Scholar 

  8. Wood, T. M. and Bhat, K. M. (1988) Methods for measuring cellulase activities, in Methods Enzymology (Wood, W. A. and Kellogg, S. T., eds.), Academic Press, San Diego, CA, pp. 87–112.

    Google Scholar 

  9. Wood, P. J., Erfle, J. D., and Teather, R. M. (1988) Use of complex formation between Congo Red and polysaccharides in detection and assay of polysaccharide hydrolases, in Methods Enzymology (Wood, W. A. and Kellogg, S. T., eds.), Academic Press, San Diego, pp. 59–74.

    Google Scholar 

  10. Murashima, K., Kosugi, A., and Doi, R. H. (2002) Thermostabilization of cellulosomal endoglucanase EngB from Clostridium cellulovorans by in vitro DNA recombination with non-cellulosomal endoglucanase EngD. Mol. Microbiol. 45, 617–626.

    Article  PubMed  CAS  Google Scholar 

  11. Lin, Z., Thorsen, T., and Arnold, F. H. (1999) Functional expression of horseradish peroxidase in E. coli by directed evolution. Biotechnol. Prog. 15, 467–471.

    Article  PubMed  CAS  Google Scholar 

  12. Lavallie, E. R., Lu, Z., Diblasio-Smith, E. A., Collins-Racie, L. A., and Mccoy, J. M. (2000) Thioredoxin as a fusion partner for production of soluble recombinant proteins in Escherichia coli. Methods Enzymol. 326, 322–340.

    Article  PubMed  CAS  Google Scholar 

  13. Hamamoto, T., Foong, F. C., Shoseyov, O., and Doi, R. H. (1992) Analysis of functional domains of endoglucanases from Clostridium cellulovorans by gene cloning, nucleotide sequencing and chimeric protein construction. Mol. Gen. Genet. 231, 472–479.

    Article  PubMed  CAS  Google Scholar 

  14. Zhao, H., Giver, L., Shao, Z., Affholter, J. A., and Arnold, F.,H. (1998) Molecular evolution by staggered extension process (StEP) in vitro recombination. Nat. Biotechnol. 16, 258–261.

    Article  PubMed  CAS  Google Scholar 

  15. Shoichet, B. K., Baase, W. A., Kuroki, R., and Matthews, B. W. (1995) A relationship between protein stability and protein function. Proc. Natl. Acad. Sci. USA 92, 452–456.

    Article  PubMed  CAS  Google Scholar 

  16. Murashima, K., Kosugi, A., and Doi, R. H. (2002) Synergistic effects on crystalline cellulose degradation between cellulosomal cellulases from Clostridium cellulovorans. J. Bacteriol. 184, 5088–5095.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Murashima, K., Doi, R.H. (2003). Selection of Heat-Stable Clostridium cellulovorans Cellulases After In Vitro Recombination. In: Arnold, F.H., Georgiou, G. (eds) Directed Enzyme Evolution. Methods in Molecular Biology™, vol 230. Humana Press. https://doi.org/10.1385/1-59259-396-8:231

Download citation

  • DOI: https://doi.org/10.1385/1-59259-396-8:231

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-286-5

  • Online ISBN: 978-1-59259-396-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics