Skip to main content

Immobilized Metal-Ion Affinity Chromatography

  • Protocol
Protein Purification Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 244))

Abstract

Immobilized metal-ion affinity chromatography (IMAC) (14) is also referred to as metal chelate chromatography, metal-ion interaction chromatography, and ligand-exchange chromatography. We view this affinity-separation technique as an intermediate between highly specific, high-affinity bioaffinity separation methods, and wider-spectrum, low-specificity adsorption methods, such as ion exchange. The IMAC stationary phases are designed to chelate certain metal ions that have selectivity for specific groups (e.g., His residues) in peptides (e.g., refs. 59) and on protein surfaces (1015). The number of stationary phases that can be synthesized for efficient chelation of metal ions is unlimited, but the critical consideration is that there must be enough exposure of the metal ion to interact with the proteins, preferably in a biospecific manner. Several examples are presented in Fig. 1. The challenge to produce new immobilized chelating groups, including protein surface metal-binding domains (17,18) is being explored continuously 19). A common fusion protein is the hexahistidine tag for purification (20). Table 1 presents a list of published procedures for the synthesis and use of stationary phases with immobilized chelating groups. This is by no means exhaustive and is intended only to give an idea of the scope and versatility of IMAC.

Schematic illustration of several types of immobilized metal-chelating group, including iminodiacetate (IDA), tris(carboxymethyl) ethylenediamine (TED), and the metal-binding peptides (GHHPH) n G (where n=1,2, 3, and 5. (From refs. 17 and 18.)

Table 1 Immobilized Chelating Groups and Metal Ions Used for Immobilized Metal-Ion Affinity Chromatography

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Porath, J., Carlsson, J., Olsson, I., and Belfrage, G. (1975) Metal chelate affinity chromatography, a new approach to protein fractionation. Nature 258, 598–599.

    Article  PubMed  CAS  Google Scholar 

  2. Porath, J. and Olin, B. (1983) Immobilized metal ion affinity adsorption and immobilized metal ion affinity chromatography of biomaterials. Serum protein affinities for gel-immobilized iron and nickel ions. Biochemistry 22, 1621–1630.

    Article  PubMed  CAS  Google Scholar 

  3. Garberc-Porekar, V. and Menart V. (2001) Perspectives of immobilized-metal affinity chromatography. J. Biochem. Biophys. Methods 49, 335–360.

    Article  Google Scholar 

  4. Chaga, G S. (2001) Twenty-five years of immobilized metal ion affinity chromatography: past, present and future. J. Biochem. Biophys. Methods 49, 313–334.

    Article  PubMed  CAS  Google Scholar 

  5. Monjon, B. and Solms, J. (1987) Group separation of peptides by ligand-exchange chromatography with a Sephadex containing N-(2-pyridyl-methyl)glycine. Anal. Biochem. 160, 88–97.

    Article  PubMed  CAS  Google Scholar 

  6. Hochuli, E., Dobeli, H., and Schacher, A. (1987) New metal chelate adsorbent selective for proteins and peptides containing neighbouring histidine residues. J. Chromatogr. 411, 177–184.

    Article  PubMed  CAS  Google Scholar 

  7. Yip, T.-T. and Hutchens T. W. (1989) Development of high-performance immobilized metal affinity chromatography for the separation of synthetic peptides and proteolytic digestion products, in Protein Recognition of Immobilized Ligands (Hutchens, T. W., ed.), UCLA Symposia on Molecular and Cellular Biology Vol. 80, Alan R. Liss, New York, pp. 45–56.

    Google Scholar 

  8. Yip, T. T., Nakagawa, Y, and Porath, J. (1989) Evaluation of the interaction of peptides with Cu(II), Ni(II), and Zn(II) by high-performance immobilized metal ion affinity chromatography. Anal. Biochem. 183, 159–171.

    Article  PubMed  CAS  Google Scholar 

  9. Hutchens, T. W. and Yip, T. T. (1990) Differential interaction of peptides and protein surface structures with free metal ions and surface-immobilized metal ions. J. Chromatogr. 500, 531–542.

    Article  PubMed  CAS  Google Scholar 

  10. Sulkowski, E. (1985) Purification of proteins by IMAC. Trends Biotechnol 3, 1–7.

    Article  CAS  Google Scholar 

  11. Hutchens, T. W. and Li, C. M. (1988) Estrogen receptor interaction with immobilized metals: differential molecular recognition of Zn2+, Cu2+, and Ni2+ and separation of receptor isoforms. J. Mol. Recogn. 1, 80–92.

    Article  CAS  Google Scholar 

  12. Hutchens, T. W., Li, C. M., Sato, Y, and Yip, T.-T. (1989) Multiple DNA-binding estrogen receptor forms resolved by interaction with immobilized metal ions. Identification of a metal-binding domain. J. Biol. Chem. 264, 17,206–17,212.

    PubMed  CAS  Google Scholar 

  13. Hemdan, E. S., Zhao, Y.-J., Sulkowski, E., and Porath, J. (1989) Surface topography of histidine residues: a facile probe by immobilized metal ion affinity chromatography. Proc. Natl. Acad. Sci. USA 86, 1811–1815.

    Article  PubMed  CAS  Google Scholar 

  14. Hutchens T W. and Yip, T.-T. (1991) Metal ligand-induced alterations in the surface structures of lactoferrin and transferrin probed by interaction with immobilized Cu(II) ions. J. Chromatogr. 536, 1–15.

    Article  PubMed  CAS  Google Scholar 

  15. Mantovaara-Jonsson, T, Pertoft, H., and Porath, J. (1989) Purification of human serum amyloid ccmponent (SAP) by calcium affinity chromatography. Biotechnol. Appl. Biochem. 11, 564–571.

    Google Scholar 

  16. Fiedler, M. and Skerra, A. (2001) Purification and characterization of His-tagged antibody fragments. in Antibody Engineering (Kontermann R., ed) Springer-Verlag, Berlin, pp. 243–256.

    Google Scholar 

  17. Hutchens, T. W., Nelson, R. W., Li, C. M., and Yip, T.-T. (1992) Synthetic metal binding protein surface domains for metal ion-dependent interaction chromatography. I. Analysis of bound metal ions by matrix-assisted UV laser desorption time-of-flight mass spectrometry. J. Chromatogr. 604, 125–132.

    Article  PubMed  CAS  Google Scholar 

  18. Hutchens, T. W. and Yip, T.-T. (1992) Synthetic metal binding protein surface domains for metal ion-dependent interaction chromatography. II. Immobilization of synthetic metal-binding peptides from metal-ion transport proteins as model bioactive protein surface domains. J. Chromatogr. 604, 133–141.

    Article  PubMed  CAS  Google Scholar 

  19. Hutchens, T W. and Yip, T.-T. (1990) Model protein surface domains for the investigation of metal ion-dependent macromolecular interactions and metal ion transfer. Methods 4, 79–96.

    Google Scholar 

  20. Bornhorst, J. A. and Falke, J. J. (2000) Purification of proteins using polyhistidine affinity tags. Methods Enzymol. 326, 245–254.

    Article  PubMed  CAS  Google Scholar 

  21. Hutchens, T W. and Yip, T.-T. (1990) Protein interactions with immobilized transition metal ions: quantitative evaluations of variations in affinity and binding capacity. Anal. Biochem. 191, 160–168.

    Article  PubMed  CAS  Google Scholar 

  22. Nakagawa, Y, Yip, T T, Belew, M., and Porath, J. (1988) High performance immobilized metal ion affinity chromatography of peptides: analytical separation of biologically active synthetic peptides. Anal. Biochem. 168, 75–81.

    Article  PubMed  CAS  Google Scholar 

  23. Fatiadi A. J. (1987) Affinity chromatography and metal chelate affinity chromatography. CRC Crit. Rev. Anal. Chem. 18, 1–44.

    CAS  Google Scholar 

  24. Kagedal, L. (1989) Immobilized metal ion affinity chromatography, in High Resolution Protein Purification (Ryden, L. and Jansson, J.-C, eds.), Verlag Chemie, Deerfield Beach, FL, pp. 227–251.

    Google Scholar 

  25. Muszynska, G., Zheo., Y.-J., and Porath, J. (1986) Carboxypeptidase A: a model for studying the interaction of proteins with immobilized metal ions. J. Inorg. Biochem. 26, 127–135.

    Article  CAS  Google Scholar 

  26. Holmes, L. D. and Schiller, M. R. (1997) Immobilized iron (III) metal affinity chromatography for the separation ogf phophorylated macromolecules: ligands and applications. J. Liquid Chromatogr. 20, 123–142.

    Article  CAS  Google Scholar 

  27. Andersson, L. (1996) The use of immobilized Fe3+ and other hard metal ions in chromatography of peptides and proteins. Int. J. Biochromatogr. 2, 25–36.

    CAS  Google Scholar 

  28. Yip, T.-T. and Hutchens, T W. (1991) Metal ion affinity adsorption of a ZN(II)-transport protein present in maternal plasma during lactation: structural characterization and identification as histidine-rich glycoprotein. Protein Express. Purif. 2, 355–362.

    Article  CAS  Google Scholar 

  29. Hutchens, T W., Nelson, R. W., and Yip, T.-T. (1992) Recognition of transition metal ions by peptides: identification of specific metal-binding peptides in proteolytic digest maps by UV laster desorption time-of-flight spectrometry. FEBS Lett. 296, 99–102.

    Article  PubMed  CAS  Google Scholar 

  30. Hutchens, T W., Nelson, R. W., and Yip, T.-T. (1991) Evaluation of peptide-metal ion interactions by UV laser desorption time-of-flight mass spectrometry. J. Mol. Recogn. 4, 151–153.

    Article  CAS  Google Scholar 

  31. Hutchens, T W., Nelson, R. W., Allen, M. H., Li, C. M., and Yip, T.-T. (1992) Peptide metal ion interactions in solution: detection by laser desorption time-of-flight mass spectrometry and electrospray ionization mass spectrometry. Biol. Mass Spectrom. 21, 151–159.

    Article  CAS  Google Scholar 

  32. Hutchens, T W. and Yip, T.-T. (1991) Protein interactions with surface-immobilized metal ions: structure-dependent variations in affinity and binding capacity constant with temperature and urea concentration. J. Inorg. Biochem. 42, 105–118.

    Article  PubMed  CAS  Google Scholar 

  33. Figueoroa, A., Corradini, C., Feibush, B., and Karger, B. L. (1986) High-performance immobilized metal ion affinity chromatography of proteins on iminodiacetic acid silica-based bonded phases. J. Chromatogr. 371, 335–352.

    Article  Google Scholar 

  34. Hutchens, T. W., Yip, T.-T., and Porath, J. (1988) Protein interaction with immobilized ligands. Quantitative analysis of equilibrium partition data and comparison with analytical affinity chromatographic data using immobilized metal ion adsorbents. Anal. Biochem. 170, 68–182.

    Article  Google Scholar 

  35. Hutchens, T. W. and Li, C. M. (1990) Ligand-binding properties of estrogen receptor proteins after interaction with surface-immobilized Zn(II) ions: evidence for localized surface interactions and minimal conformational changes. J. Mol. Recogn. 3, 174–179.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Yip, TT., Hutchens, T.W. (2004). Immobilized Metal-Ion Affinity Chromatography. In: Cutler, P. (eds) Protein Purification Protocols. Methods in Molecular Biology, vol 244. Humana Press. https://doi.org/10.1385/1-59259-655-X:179

Download citation

  • DOI: https://doi.org/10.1385/1-59259-655-X:179

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-067-0

  • Online ISBN: 978-1-59259-655-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics