Skip to main content

Shotgun Library Construction for DNA Sequencing

  • Protocol
Bacterial Artificial Chromosomes

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 255))

Abstract

Shotgun cloning is a method to generate the templates needed for DNA sequencing. This process entails breaking a large target DNA randomly into smaller fragments; end sequencing these smaller fragments; and from the overlapping sequences of the randomly generated fragments, reassembling the initial target sequence. Although this random strategy initially was described more than two decades ago (13), only a few years following the original reports describing the dideoxynucleotide method for DNA sequencing (47), it immediately did not gain wide-scale acceptance. It was not until the introduction of instrumentation (810) that was capable of collecting the required large quantity of data required for successfully implementing the shotgun method, that this approach began to be widely accepted. The shotgun cloning strategy presently is the method of choice for generating the major portion of the sequence data for sequencing projects. This holds true for target DNAs as small as a 4-kbp restriction digest fragment (1) or as large as an entire 3-Gbp mammalian or plant genome (1113) since many of the methods used have been automated (14,15). These partially or fully automated methods include the shotgun DNA template clone isolation; DNA sequence reaction pipetting; DNA sequence data collection; DNA sequencing chemistry; and computer-based shotgun sequence data assembly, visualization, and editing (1618). Therefore, it is reasonable to initially obtain from 6- to 10-fold shotgun sequence coverage and then proceed with more directed closure and finishing methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anderson, S. (1981) Shotgun DNA sequencing using cloned DNase I-generated fragments. Nucleic Acids Res. 9, 3015–3027.

    Article  PubMed  CAS  Google Scholar 

  2. Messing, J., Crea, R., and Seeburg, P. H. (1981) A system for shotgun DNA sequencing. Nucleic Acids Res. 9, 309–321.

    Article  PubMed  CAS  Google Scholar 

  3. Deininger, P. L. (1983) Random subcloning of sonicated DNA: application to shotgun DNA sequence analysis. Anal. Biochem. 129, 216–223.

    Article  PubMed  CAS  Google Scholar 

  4. Sanger, F., Nicklen, S., and Coulson, A. R. (1977) DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA 74, 5463–5467.

    Article  PubMed  CAS  Google Scholar 

  5. Sanger, F., Coulson, A. R., Barrell, B. G., Smith, A. J. H., and Roe, B. A. (1980) Cloning in single-stranded bacteriophage as an aid to rapid DNA sequencing. J. Mol. Biol. 143, 161–178.

    Article  PubMed  CAS  Google Scholar 

  6. Bankier, A. T., Weston, K. M., and Barrell, B. G. (1987) Random cloning and sequencing by the M13/dideoxynucleotide chain termination method. Methods Enzymol. 155, 51–93.

    Article  PubMed  CAS  Google Scholar 

  7. Bankier, A. T. and Barrell, B. G. (1989) Sequencing single-stranded DNA using the chain-termination method in Nucleic Acids Sequencing: A Practical Approach (Howe, C. J. and Ward, E. S., eds.), IRL, Oxford, UK, pp. 37–78.

    Google Scholar 

  8. Smith, L. M., Sanders, J. Z., Kaiser, R. J., Hughes, P., Dodd, C., Connell, C. R., Heiner, C., Kent, S. B. H., and Hood, L. E. (1986) Fluorescence detection in automated DNA sequence analysis. Nature 321, 674–679.

    Article  PubMed  CAS  Google Scholar 

  9. Ansorge, W., Sproat, B., Stegemann, J., Schwager, C., and Zenke, M. (1987). Automated DNA sequencing: ultrasensitive detection of fluorescent bands during electrophoresis. Nucleic Acids Res. 15, 4593–4602.

    Article  PubMed  CAS  Google Scholar 

  10. Brumbaugh, J. A., Middendorf, L. R., Grone, D. L., and Ruth, J. L. (1988) Continuous, on-line DNA sequencing using oligodeoxynucleotide primers with multiple fluorophores. Proc. Natl. Acad. Sci. USA 85, 5610–5614.

    Article  PubMed  CAS  Google Scholar 

  11. Venter, C. J., Adams, M. D., Myers, E. W., et al. (2001) The sequence of the human genome. Science 291, 1304–1351.

    Article  PubMed  CAS  Google Scholar 

  12. Yu, J., Hu, S., Wang, J., et al. (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science 296, 79–92.

    Article  PubMed  CAS  Google Scholar 

  13. Goff, S. A., Ricke, D., Lan, T. H., et. al. (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science 296, 92–100.

    Article  PubMed  CAS  Google Scholar 

  14. Mardis, E. R. and Roe, B. A. (1989) Automated methods for single-stranded DNA isolation and dideoxynucleotide DNA sequencing reactions on a robotic workstation. Biotechniques 7, 840–850.

    Article  PubMed  CAS  Google Scholar 

  15. Bodenteich, A., Chissoe, S., Wang, Y. F., and Roe, B. A. (1993) Shotgun cloning as the strategy of choice to generate templates for high-throughput dideoxynucleotide sequencing, in Automated DNA Sequencing and Analysis Techniques (Venter, J. C., ed.), Academic, London, pp. 42–50.

    Google Scholar 

  16. Ewing, B., Hillier, L., Wendl, M., and Green, P. (1998) Basecalling of automated sequencer traces using phred. I. Accuracy assessment. Genome Res. 8, 175–185.

    PubMed  CAS  Google Scholar 

  17. Ewing, B. and Green, P. (1998) Basecalling of automated sequencer traces using phred. II. Error probabilities. Genome Res. 8, 186–194.

    PubMed  CAS  Google Scholar 

  18. Gordon, D., Abajian, C., and Green, P. (1998) Consed: a graphical tool for sequence finishing. Genome Res. 8, 195–202.

    PubMed  CAS  Google Scholar 

  19. Birnboim, H. C. and Doly, J. (1979) A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res. 7(6), 1513–1523.

    Article  PubMed  CAS  Google Scholar 

  20. Oefner, P. J., Hunicke-Smith, S. P. Chiang, L., Dietrich, F., Mulligan, J., and Davis, R. W (1996) Efficient random subcloning of DNA sheared in a recirculating point-sink flow system. Nucleic Acids Res. 24, 3879–3886.

    Article  PubMed  CAS  Google Scholar 

  21. Pan, H., Chissoe, S. L., Bodenteich, A., Wang, Z., Iyer, K., Clifton, S. W., Crabtree, J. S., and Roe, B. A. (1994) The complete nucleotide sequences of the SacBII Kan domain of the P1 and pAD10-SacBII cloning vector and three cosmid vectors: pTCF, svPHEP, and LAWRIST16. GATA 11(5–6), 181–186.

    CAS  Google Scholar 

  22. Bankier, A. T., Weston, K. M., and Barrell, B. G. (1987) Random cloning and sequencing by the M13/dideoxynucleotide chain termination method. Methods Enzymol. 155, 51–93.

    Article  PubMed  CAS  Google Scholar 

  23. Mandel, M. and Higa, A. (1970) Calcium dependent bacteriophage DNA infection. J. Mol. Biol. 53, 154–159.

    Article  Google Scholar 

  24. Dower, W. J., Miller, J. F., and Ragsdale, C. W. (1988) High efficiency transformation of E. coli by high voltage electroporation. Nucleic Acids Res. 16, 6127–6145.

    Article  PubMed  CAS  Google Scholar 

  25. Sharma, R. C. and Schimke, R. T. (1996) Preparation of electro-competent E. coli using salt-free growth medium. Biotechniques 20, 42–44.

    PubMed  CAS  Google Scholar 

  26. Cohen, S. N., Chang, A. C. Y, and Hsu, L. (1992) Nonchromosomal antibiotic resistance in bacteria: genetic transformation of Escherichia coli by R-factor DNA. Proc. Natl. Acad. Sci. USA 69, 2110–2114.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Roe, B.A. (2004). Shotgun Library Construction for DNA Sequencing. In: Zhao, S., Stodolsky, M. (eds) Bacterial Artificial Chromosomes. Methods in Molecular Biology™, vol 255. Humana Press. https://doi.org/10.1385/1-59259-752-1:171

Download citation

  • DOI: https://doi.org/10.1385/1-59259-752-1:171

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-988-9

  • Online ISBN: 978-1-59259-752-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics