Skip to main content

Designing Combinatorial Libraries Optimized on Multiple Objectives

  • Protocol
Chemoinformatics

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 275))

Abstract

The recent emphasis in combinatorial library design has shifted from the design of very large diverse libraries to the design of smaller more focused libraries. Typically the aim is to incorporate as much knowledge into the design as possible. This knowledge may relate to the target protein itself or may be derived from known active and inactive compounds. Other factors should also be taken into account, such as the cost of the library and the physicochemical properties of the compounds that are contained within the library. Thus, library design is a multiobjective optimization problem. Most approaches to optimizing multiple objectives are based on aggregation methods whereby the objectives are assigned relative weights and are combined into a single fitness function. A more recent approach involves the use of a Multiobjective Genetic Algorithm in which the individual objectives are handled independently without the need to assign weights. The result is a family of solutions each of which represents a different compromise in the objectives. Thus, the library designer is able to make an informed choice on an appropriate compromise solution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wolcke, J. and Ullmann, D. (2001) Miniaturized HTS technologies—HTS. Drug Discov. Today 6, 637–646.

    Article  PubMed  Google Scholar 

  2. Valler, M. J. and Green, D. (2000) Diversity screening versus focussed screening in drug discovery. Drug Discov. Today 5, 286–293.

    Article  PubMed  Google Scholar 

  3. Rose, S. and Stevens, A. (2003) Computational design strategies for combinatorial libraries. Current Opin. Chem. Biol. 7, 331–339.

    Article  CAS  Google Scholar 

  4. Martin, E. J. and Critchlow, R. E. (1999) Beyond mere diversity: tailoring combinatorial libraries for drug discovery. J. Comb. Chem. 1, 32–45.

    Article  PubMed  CAS  Google Scholar 

  5. Beavers, M. B. and Chen, X. (2002) Structure-based combinatorial library design: methodologies and applications. J. Mol. Graph. Model. 20, 463–468.

    Article  PubMed  CAS  Google Scholar 

  6. Leach, A. R., Bryce, R. A. and Robinson, A. J. (2000) Synergy between combinatorial chemistry and de novo design. J. Mol. Graphics Model. 18, 358–367.

    Article  CAS  Google Scholar 

  7. Kubinyi, H. (2002) From narcosis to hyperspace: the history of QSAR. Quantit. Struct.-Act. Relat. 21, 348–356.

    Article  CAS  Google Scholar 

  8. Barnard, J. M., Downs, G. M., and Willett, P. (1998) Chemical similarity searching. J. Chem. Inf. Comput. Sci. 38, 983–996.

    Google Scholar 

  9. van de Waterbeemd, H. and Gifford, E. (2002) ADMET in silico modelling: towards prediction paradise? Nat. Rev. Drug Discov. 2, 192–204.

    Article  Google Scholar 

  10. Gillet, V. J. and Willett, P. (2001) Dissimilarity-based compound selection for library design. In Combinatorial library design and evaluation. Principles, software tools and applications in drug discovery, Ghose, A. K. and Viswanadhan, A. N. (eds.), Marcel Dekker, New York, pp. 379–398.

    Google Scholar 

  11. Gillet, V. J., Willett, P., and Bradshaw, J. (1997) The effectiveness of reactant pools for generating structurally diverse combinatorial libraries. J. Chem. Inf. Comput. Sci. 37, 731–740.

    CAS  Google Scholar 

  12. Jamois, E. A., Hassan, M., and Waldman, M. (2000) Evaluation of reactant-based and product-based strategies in the design of combinatorial library subsets. J. Chem. Inf. Comput. Sci. 40, 63–70.

    PubMed  CAS  Google Scholar 

  13. ACD. Available Chemicals Directory, MDL Information Systems, Inc. 14600 Catalina Street, San Leandro, CA 94577. http://www.mdli.com.

  14. Leach, A. R., Bradshaw, J., Green, D. V. S., Hann, M. M., and Delany III, J. J. (1999) Implementation of a system for reagent selection and library enumeration, profiling and design. J. Chem. Inf. Comput. Sci. 39, 1161–1172.

    PubMed  CAS  Google Scholar 

  15. Brown, R. D. (1997) Descriptors for diversity analysis. Perspect. Drug Discov. Design 7/8, 31–49.

    CAS  Google Scholar 

  16. Bajorath, J. (2001) Selected concepts and investigations in compound classification, molecular descriptor analysis, and virtual screening. J. Chem. Inf. Comput. Sci. 41, 233–245.

    PubMed  CAS  Google Scholar 

  17. Pickett, S. D., Mason, J. S., and McLay, I. M. (1996) Diversity profiling and design using 3D pharmacophores: Pharmacophore-derived queries (PDQ). J. Chem. Inf. Comput. Sci. 36, 1214–1223.

    CAS  Google Scholar 

  18. Waldman, M., Li, H., and Hassan, M. (2000) Novel algorithms for the optimization of molecular diversity of combinatorial libraries. J. Mol. Graphics Model 18, 412–426.

    Article  CAS  Google Scholar 

  19. Lipinski, C. A., Lombardo, F., Dominy, B. W., and Feeney, P. J. (1997) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Delivery Rev. 23, 3–25.

    Article  CAS  Google Scholar 

  20. Clark, D. E. and Pickett, S. D. (2000) Computational methods for the prediction of “drug-likeness.” Drug Discov. Today 5, 49–58.

    Article  PubMed  CAS  Google Scholar 

  21. Hann, M. M., Leach, A. R., and Harper, G. (2001) Molecular complexity and its impact on the probability of finding leads for drug discovery. J. Chem. Inf. Comput. Sci. 41, 856–864

    PubMed  CAS  Google Scholar 

  22. Oprea, T. I. (2000) Property distributions of drug-related chemical databases. J. Comput-Aided Mol. Des. 14, 251–264.

    Article  PubMed  CAS  Google Scholar 

  23. Gillet, V. J., Willett, P., and Bradshaw, J. (1999) Selecting combinatorial libraries to optimise diversity and physical properties. J. Chem. Inf. Comput. Sci. 39, 167–177.

    Google Scholar 

  24. WDI: The World Drug Index is available from Derwent Information, 14 Great Queen St., London W2 5DF, UK.

    Google Scholar 

  25. Lewis, R. A., Pickett, S. D., and Clark, D. E. (2000) Computer-aided molecular diversity analysis and combinatorial library design. In Reviews in computational chemistry, Lipkowitz, K. B. and Boyd, D.B. (eds.), VCH Publishers, New York, Vol. 16, pp. 1–51.

    Chapter  Google Scholar 

  26. Mason, J. S. and Beno, B. R. (2000) Library design using BCUT chemistry-space descriptors and multiple four-point pharmacophore fingerprints: simultaneous optimisation and structure-based diversity. J. Mol. Graph. Model. 18, 438–451.

    Article  PubMed  CAS  Google Scholar 

  27. Agrafiotis, D. K. (2002) Multiobjective optimisation of combinatorial libraries. J. Comput.-Aid. Mol. Design 5/6, 335–356.

    Article  Google Scholar 

  28. Zheng, W., Hung, S. T., Saunders, J. T., and Seibel, G. L. (2000) PICCOLO: a tool for combinatorial library design via multicriterion optimization. In Pacific Symposium on Biocomputing 2000, Atlman, R. B., Dunkar, A. K., Hunter, L., Lauderdale, K., and Klein, T. E. (eds.), World Scientific, Singapore, pp. 588–599.

    Google Scholar 

  29. Brown, J. D., Hassan, M., and Waldman, M. (2000) Combinatorial library design for diversity, cost efficiency, and drug-like character. J. Mol Graph. Model. 18, 427–437.

    Article  PubMed  CAS  Google Scholar 

  30. Coello, C. A., van Veldhuizen, D. A., and Lamont, G.B. (2002) Evolutionary algorithms for solving multi-objective problems. Kluwer Academic Publishers, New York.

    Google Scholar 

  31. Fonseca, C. M. and Fleming, P. J. (1995) An overview of evolutionary algorithms in multiobjective optimization. In Evolutionary computation, De Jong, K. (ed.), The Massachusetts Institute of Technology, Cambridge, MA, Vol. 3, No. 1, pp. 1–16.

    Google Scholar 

  32. Gillet, V. J., Khatib, W., Willett, P., Fleming, P., and Green, D. V. S. (2002) Combinatorial library design using a multiobjective genetic algorithm. J. Chem. Inf. Comput. Sci. 42, 375–385.

    PubMed  CAS  Google Scholar 

  33. Gillet, V. J., Willett, P., Fleming P., and Green, D. V. S. (2002) Designing focused libraries using MoSELECT. J. Mol Graph. Model. 20, 491–498.

    Article  PubMed  CAS  Google Scholar 

  34. Wright, T., Gillet, V. J., Green, D. V. S., and Pickett, S. D. (2003) Optimising the size and configuration of combinatorial libraries. J. Chem. Inf. Comput. Sci. 43, 381–390.

    PubMed  CAS  Google Scholar 

  35. Cerius2 is available from Accelrys Inc., 9685 Scranton Road, San Diego, CA 92121.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Humana Press Inc.

About this protocol

Cite this protocol

Gillet, V.J. (2004). Designing Combinatorial Libraries Optimized on Multiple Objectives. In: Bajorath, J. (eds) Chemoinformatics. Methods in Molecular Biology™, vol 275. Humana Press. https://doi.org/10.1385/1-59259-802-1:335

Download citation

  • DOI: https://doi.org/10.1385/1-59259-802-1:335

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-261-2

  • Online ISBN: 978-1-59259-802-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics