Skip to main content

Cultivation of Normal Human Epidermal Melanocytes in the Absence of Phorbol Esters

  • Protocol
Human Cell Culture Protocols

Part of the book series: Methods in Molecular Medicine™ ((MIMM,volume 107))

Abstract

An important approach in studies of normal, diseased, and malignant cells is their growth in culture. The isolation and subsequent culture of human epidermal melanocytes has been attempted since 1957 (1-5), but only since 1982 have pure normal human melanocyte cultures been reproducibly established to yield cells in sufficient quantity for biological, biochemical, and molecular analyses (6). Selective growth of melanocytes, which comprise only 3-7% of epidermal cells in normal human skin, was initially achieved by suppressing the growth of keratinocytes and fibroblasts in epidermal cell suspensions with the tumor promoter 12-O-tetradecanoyl phorbol-13-acetate (TPA) and the intracellular cyclic adenosine 3, 5 monophosphate (cAMP) enhancer cholera toxin, respectively, which both also act as melanocyte growth promoters. However, phorbol ester is metabolically stable and has prolonged effects on multiple cellular responses (6). Recent progress in basic cell-culture technology, along with an improved understanding of culture requirements, has led to an effective and standardized isolation method, and special TPA-free culture media for selective growth and long-term maintenance of human melanocytes. The detailed description of this new method is aimed at encouraging its use in basic and applied biological research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hu, F., Staricco, R.J., Pinkus, H., and Fosnaugh, R. (1957) Human melanocytes in tissue culture. J. Invest. Dermatol. 28, 15–32.

    PubMed  CAS  Google Scholar 

  2. Karasek, M. and Charlton, M. E. (1980) Isolation and growth of normal human skin melanocytes. Clin. Res. 28, 570A.

    Google Scholar 

  3. Kitano, Y. (1976) Stimulation by melanocyte stimulating hormone and dibutyryl adenosine 3, 5-cyclic monophosphate of DNA synthesis in human melanocytes in vitro. Arch. Derm. Res. 257, 47–52.

    Article  CAS  Google Scholar 

  4. Mayer, T. C. (1982) The control of embryonic pigment cell proliferation in culture by cyclic AMP. Dev. Biol. 94, 509–614.

    Article  PubMed  CAS  Google Scholar 

  5. Wilkins, L. M. and Szabo, G. C. (1981) Use of mycostatin-supplemented media to establish pure epidermal melanocyte culture (abstract). J. Invest. Dermatol. 76, 332.

    Google Scholar 

  6. Eisinger, M. and Marko, O. (1982) Selective proliferation of normal human melanocytes in vitro in the presence of phorbol ester and cholera toxin. Proc. Natl. Acad. Sci. USA 79, 2018–2022.

    Article  PubMed  CAS  Google Scholar 

  7. Herlyn, M., Herlyn, D., Elder, D. E., et al. (1983) Phenotypic characteristics of cells derived from precursors of human melanoma. Cancer Res. 43, 5502–5508.

    PubMed  CAS  Google Scholar 

  8. Herlyn, M., Thurin, J., Balaban, G., et al. (1985) Characteristics of cultured human melanocytes isolated from different stages of tumor progression. Cancer Res. 45, 5670–5676.

    PubMed  CAS  Google Scholar 

  9. Halaban, R., Kwon, B. S., Ghosh, Delli Bovi, P., and Baird, A. (1988) bFGF as an autocrine growth factor for human melanomas. Oncogene Res. 3, 177–186.

    PubMed  CAS  Google Scholar 

  10. Hachiya, A., Kobayashi, A., Onuchi, A., Takema, Y., and Imokawa, G. (2001) The paracrine role of stem cell factor/c-kit signaling in the activation of human melanocytes in ultraviolet-B-induced pigmentation. J. Invest. Dermatol. 116, 578–586.

    Article  PubMed  CAS  Google Scholar 

  11. Hedley, S. J., Gawkrodger, D. J., Weetman, A. P., and MacNeil, S. (1998) alpha-MSH and melanogenesis in normal human adult melanocytes. Pigment Cell Res. 11, 45–56.

    Article  PubMed  CAS  Google Scholar 

  12. Nesbit, M., Nesbit, H. K., Bennett, J., et al. (1999) Basic fibroblast growth factor induces a transformed phenotype in normal human melanocytes. Oncogene 18, 6469–6476.

    Article  PubMed  CAS  Google Scholar 

  13. Edmondson, S. R., Russo, V. C., McFarlane, A. C., Wraight, C. J., and Werther, G. A. (1999) Interactions between growth hormone, insulin-like growth factor 1, and basic fibroblast growth factor in melanocyte growth. J. Clin. Endocrinol. Metab. 84, 1638–1644.

    Article  PubMed  CAS  Google Scholar 

  14. Herlyn, M., Rodeck, U., Mancianti, M. L., et al. (1987) Expression of melanoma-associated antigens in rapidly dividing human melanocytes in culture. Cancer Res. 47,3057–3061.

    PubMed  CAS  Google Scholar 

  15. Herlyn, M., Clark, W. H., Rodeck, U., Mancianti, M. L., Jambrosic, J., and Koprowski, H. (1987) Biology of tumor progression in human melanocytes. Lab Invest. 56, 461–474.

    PubMed  CAS  Google Scholar 

  16. Pittelkow, M. R. and Shipley, G. D. (1989) Serum-free culture of normal human melanocytes: growth kinetics and growth factor requirements. J. Cell Physiol. 140, 565–576.

    Article  PubMed  CAS  Google Scholar 

  17. Imokawa, G., Yada, Y., and Miyagishi, M. (1992) Endothelins secreted from human keratinocytes are intrinsic mitogens for human melanocytes. J. Biol. Chem. 267, 24,675–24,680.

    PubMed  CAS  Google Scholar 

  18. Hirobe, T. (2001) Endothelins are involved in regulating the proliferation and differentiation of mouse epidermal melanocytes in serum-free primary culture. J. Invest. Dermatol. Symp. Proc. 6, 25–31.

    Article  CAS  Google Scholar 

  19. Tada, A., Suzuki, I., Im, S., et al. (1998) Endothelin-1 is a paracrine growth factor that modulates melanogenesis of human melanocytes and participates in their responses to ultraviolet radiation. Cell Growth Differ. 9, 575–584.

    PubMed  CAS  Google Scholar 

  20. Lahav, R., Ziller, C., Dupin, E., and Le Douarin, N. M. (1996) Endothelin-3 promotes neural crest cell proliferation and mediates a vast increase in melanocyte number in culture. Proc. Natl. Acad. Sci. USA 93, 3892–3897.

    Article  PubMed  CAS  Google Scholar 

  21. Reid, K., Turley, A. M., Maxwell, G. D., et al. (1996) Multiple roles for endothe-lin in melanocyte development: regulation of progenitor number and stimulation of differentiation. Development 122, 3911–3919.

    PubMed  CAS  Google Scholar 

  22. Halaban, R., Rubin, J. S., Funasaka, Y., et al. (1992) Met and hepatocyte growth factor/scatter factor signal transduction in normal melanocytes and melanoma cells. Oncogene 7, 2195–2206.

    PubMed  CAS  Google Scholar 

  23. Matsumoto, K., Tajima, H., and Nakamura, T. (1991) Hepatocyte growth factor is a potent stimulator of human melanocyte DNA synthesis and growth. Biochem. Biophys. Res. Commun. 176, 45–51.

    Article  PubMed  CAS  Google Scholar 

  24. Imokawa, G., Yada, Y., Morisaki, N., and Kimura, M. (1998) Biological characterization of human fibroblast-derived mitogenic factors for human melanocytes. Biochem. J. 330, 1235–1239.

    PubMed  CAS  Google Scholar 

  25. Grichnik, J. M., Burch, J. A., Burchette, J., and Shea, C. R. (1998) The SCF/KIT pathway plays a critical role in the control of normal melanocyte homeostasis. J. Invest. Dermatol. 111, 233–238.

    Article  PubMed  CAS  Google Scholar 

  26. Halaban, R. (2000) The regulation of normal melanocyte proliferation. Pigment Cell Res. 13, 474.

    Article  Google Scholar 

  27. Imokawa, G., Kobayasi, T., and Miyagishi, M. (2000) Intracellular signaling mechanisms leading to synergistic effects of endothelin-1 and stem cell factor on proliferation of cultured human melanocytes. Cross-talk via trans-activation of the tyrosine kinase c-kit receptor. J. Biol. Chem. 275, 33,321–33,328.

    Article  PubMed  CAS  Google Scholar 

  28. Kapur, R., Everett, E. T., Uffman, J., et al. (1997) Overexpression of human stem cell factor impairs melanocyte, mast cell and thymocyte development: A role for receptor tyrosine kinase-mediated mitogen activated protein kinase activation in cell differentiation. Blood 90, 3018–3026.

    PubMed  CAS  Google Scholar 

  29. Herlyn, M., Mancianti, M. L., Jambrosic, J., Bolen, J. B., and Koprowski, H. (1988) Regulatory factors that determine growth and phenotype of normal human melanocytes. Exp. Cell Res. 179, 322–331.

    Article  PubMed  CAS  Google Scholar 

  30. Abdel-Malek, Z. A. (1988) Endocrine factors as effectors of integumetal pigmentation. Dermatol. Clin. 6, 175–184.

    PubMed  CAS  Google Scholar 

  31. Adashi, E. Y., Resnick, C. E., Svoboda, M. E., and Van Wyk, J. J. (1986) Follicle-stimulating hormone enhances somatomedin C binding to cultured rat granulosa cells. J. Biol. Chem. 261, 3923–3926.

    PubMed  CAS  Google Scholar 

  32. Gilchrest, B. A., Vrabel, M. A., Flynn, E., and Szabo, G. (1984) Selective cultivation of human melanocytes from newborn and adult epidermis. J. Invest. Dermatol. 83, 370–376.

    Article  PubMed  CAS  Google Scholar 

  33. Medawar, P. B. (1941) Sheets of pure epidermal epithelium from human skin. Nature 148, 783.

    Article  Google Scholar 

  34. Niedel, J. E. and Blackshear, P. J. (1986) Protein kinase C, in Phosphoinositides and Receptor Mechanisms (Putney, J. W., Jr., ed.), Liss, New York, pp. 47–88.

    Google Scholar 

  35. Cela, A., Leong, I., and Krueger, J. (1991) Tigliane-type phorbols stimulate human melanocyte proliferation: potentially safer agents for melanocyte culture. J. Invest. Dermatol. 96, 987–990.

    Article  PubMed  CAS  Google Scholar 

  36. Hsu, M.-Y. and Herlyn, M. (1996) Cultivation of normal human epidermal melanocytes, in Human Cell Culture Protocols (Jones, G., ed.), Humana, Totowa, NJ, pp. 9–20.

    Chapter  Google Scholar 

  37. Herlyn, M. and Koprowski, H. (1988) Melanoma antigens: immunological and biological characterization and clinical significance. Ann. Rev. Immunol. 6, 283–308.

    Article  CAS  Google Scholar 

  38. Houghton, A. N., Eisinger, M., Albino, A. P., Cairncross, J. G., and Old, L. J. (192) Surface antigens of melanocytes and melanomas: markers of melanocyte differentiation and melanoma subsets. J. Exp. Med. 156, 1755–1766.

    Article  Google Scholar 

  39. Shih, I.-M., Elder, D. E., Hsu, M.-Y., and Herlyn, M. (1994) Regulation of Mel-CAM/MUC18 expression on melanocytes of different stages of tumor progression by normal keratinocytes. J. Am. Pathol. 145, 837–845.

    CAS  Google Scholar 

  40. Shih, I.-M., Nesbit, M., Herlyn, M., and Kurman, R. J. (1998) A new Mel-CAM (CD146)-specific monoclonal antibody, MN-4, on paraffin-embedded tissue. Mod. Pathol. 11,11,098–11,106.

    Google Scholar 

  41. Elder, D. E., Rodeck, U., Thurin, J., et al. (1989) Antigenic profile of tumor progression stages in human melanocytes, nevi, and melanomas. Cancer Res. 49, 5091–5096.

    PubMed  CAS  Google Scholar 

  42. Hsu, M.-Y., Wheelock, M. J., Johnson, K. R., and Herlyn, M. (1996) Shifts in cadherin profiles between human normal melanocytes and melanomas. J. Invest. Dermatol. Symp. Proc. 1, 188–194.

    CAS  Google Scholar 

  43. Valyi-Nagy, I. and Herlyn, M. (1991) Regulation of growth and phenotype of normal human melanocytes in culture, in Melanoma 5, Series on Cancer Treatment and Research (Nathanson, L., ed.), Kluwer Academic, Boston, MA, pp. 85–101.

    Google Scholar 

  44. Scott, G. A. and Haake, A. R. (1991) Keratinocytes regulate melanocyte number in human fetal and neonatal skin equivalents. J. Invest. Dermatol. 97, 776–781.

    Article  PubMed  CAS  Google Scholar 

  45. DeLuca, M., D’Anna, F., Bondanza, S., Franzi, A. T., and Cancedda, R. (1988) Human epithelial cells induce human melanocyte growth in vitro but only skin keratinocytes regulate its proper differentiation in the absence of dermis. J. Cell Biol. 107, 1919–1926.

    Article  CAS  Google Scholar 

  46. Valyi-Nagy, I., Hirka, G., Jensen, P.J., Shih, I.-M., Juhasz, I., and Herlyn, M. (1993) Undifferentiated keratinocytes control growth, morphology, and antigen expression of normal melanocytes through cell-cell contact. Lab. Invest. 69, 152–159.

    PubMed  CAS  Google Scholar 

  47. Herlyn, M. and Shih, I.-M. (1994) Interactions of melanocytes and melanoma cells with the microenvironment. Pigment Cell Res. 7, 81–88.

    Article  PubMed  CAS  Google Scholar 

  48. Hsu, M.-Y., Meier, F., Nesbit, M., et al. (2000) E-cadherin expression in melanoma cells restores keratinocyte-mediated growth control and down-regulates expression of invasion-related adhesion receptors. Am. J. Pathol. 156, 1515–1525.

    Article  PubMed  CAS  Google Scholar 

  49. Hsu, M.-Y., Andl, T., Li, G., Meinkoth, J. L., and Herlyn, M. (2000) Cadherin repertoire determines partner-specific gap junctional communication during melanoma progression. J. Cell Sci. 113, 1535–1542.

    PubMed  CAS  Google Scholar 

  50. Hsu, M.-Y., Meier, F., and Herlyn, M. (2002) Melanoma development and progression: A conspiracy between tumor and host. Differentiation 70, 522–536.

    Article  PubMed  CAS  Google Scholar 

  51. Kitano, Y. and Okada, N. (1983) Separation of the epidermal sheet by dispase. Br. J. Dermatol. 108, 555–560.

    Article  PubMed  CAS  Google Scholar 

  52. Riley, P. A. (1975) Growth inhibition in normal mammalian melanocytes in vitro. Br. J. Dermatol. 92, 291–304.

    Article  PubMed  CAS  Google Scholar 

  53. Mansur, J. D., Fukuyama, K., Gellin, G. A., and Epstein, W. L. (1978) Effects of 4-tertiary butyl catechol on tissue cultured melanocytes. J. Invest. Dermatol. 70, 275–279.

    Article  PubMed  CAS  Google Scholar 

  54. Stanley, R. and Yuspa, S. H. (1983) Specific epidermal protein markers are modulated during calcium-induced terminal differentiation. J. Cell Biol. 96, 1809–1814.

    Article  PubMed  CAS  Google Scholar 

  55. Price, R M., Taylor, W. G., Camalier, R. R, and Sanford, K. K. (1983) Approaches to enhance proliferation of human epidermal keratinocytes in mass culture. J. Natl. Cancer Inst. 70, 853–861.

    PubMed  CAS  Google Scholar 

  56. Hennings, H. and Holbroot, K. A. (1983) Calcium regulation of cell-cell contact and differentiation of epidermal cells in culture. An ultrastructural study. Exp. Cell Res. 143, 127–142.

    Article  PubMed  CAS  Google Scholar 

  57. Prunieras, M., Moreno, G., Dosso, Y., and Vinzens, G. (1976) Studies on guinea pig skin cell cultures: V. Co-cultures of pigmented melanocytes and albino keratinocytes, a model for the study of pigment transfer. Acta Dermatovenereol. 56, 1–9.

    CAS  Google Scholar 

  58. Tsuji, T. and Karasek, M. (1983) A procedure for the isolation of primary cultures of melanocytes from newborn and adult human skin. J. Invest. Dermatol. 81, 179–180.

    Article  PubMed  CAS  Google Scholar 

  59. Herlyn, M., Clark, W. H., Rodeck, U., Mancianti, M. L., Jambrosic, J., and Koprowski, H. (1987) Biology of tumor progression in human melanocytes. Lab. Invest. 56, 461–474.

    PubMed  CAS  Google Scholar 

  60. Swope, V. B., Medrano, E. E., Smalara, D., and Abdel-Malek, Z.A. (1995) Long-term proliferation of human melanocytes is supported by the physiologic mitogens alpha-melanotropin, endothelin-1, and basic fibroblast growth factor. Exp. Cell Res. 217, 453–459.

    Article  PubMed  CAS  Google Scholar 

  61. Halaban, R., Langdon, R., Birchall, N., et al. (1988) Basic fibroblast growth factor from keratinocytes is a natural mitogen for melanocytes. J. Cell Biol. 107, 1611–1619.

    Article  PubMed  CAS  Google Scholar 

  62. Tang, A., Eller, M. S., Hara, M., Yaar, M., Hirohashi, S., and Gilchrest, B. A. (1994) E-cadherin is the major mediator of human melanocyte adhesion to keratinocytes in vitro. J. Cell Sci. 107, 893–992.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc.

About this protocol

Cite this protocol

Hsu, MY., Li, L., Herlyn, M. (2005). Cultivation of Normal Human Epidermal Melanocytes in the Absence of Phorbol Esters. In: Picot, J. (eds) Human Cell Culture Protocols. Methods in Molecular Medicine™, vol 107. Humana Press. https://doi.org/10.1385/1-59259-861-7:013

Download citation

  • DOI: https://doi.org/10.1385/1-59259-861-7:013

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-222-3

  • Online ISBN: 978-1-59259-861-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics