Skip to main content

Amino Acid-Coded Mass Tagging for Quantitative Profiling of Differentially Expressed Proteins and Modifications in Cells

  • Protocol
The Proteomics Protocols Handbook

Part of the book series: Springer Protocols Handbooks ((SPH))

  • 4120 Accesses

Abstract

To date, large-scale protein quantitation mainly relies on high-resolution separation of complex mixtures using two-dimensional gel electrophoresis (2-DE). In comparison with 2-DE-based protein intensity displays for quantitating differentially expressed proteins, mass spectrometry (MS)-based quantitation of protein expression remains a challenging task because a mass spectrometer itself is a poor quantitative analyzer, as a result of the uneven ionization efficiency of different peptides. Recently, several techniques coupling stable isotope labeling (SIL) to MS have emerged as the primary approach for rapid, large-scale protein quantitation (14). There are two major strategies to quantitate proteins through SIL—chemically introducing SIL tags either after cell lysis, or in vivo/in vitro during cell growth (57). Chemical SIL approaches usually target at a particular residue of tryptic peptides through chemical reactions after cell lysis, thus reducing the complexity of a sample. The most representative methods are isotope-coded affinity tags (ICAT) (1) and mass-coded abundance tagging (MCAT) (4). Disadvantages include the relatively low efficiency of these chemical modification reactions and the limited abundance of target residues. On the other hand, during cell growth, for example, Oda et al. used 15N uniformly labeled medium to label all nitrogen atoms in the whole proteome, and applied this strategy to quantitate protein expression and to identify modifications (5). Our laboratory originally developed a different isotope-tagging strategy, using SIL amino acids as tag precursors that can be incorporated into cellular proteins in a residue-specific manner. These amino acidcoded mass tags (AACTs) then provide a signature for each individual protein or modification for quantitation and concurrent identification (713).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gygi, S. P., Rist, B., Gerber, S. A., Turecek, F., Gelb, M.H., and Aebersold, R. (1999) Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat Biotechnol 17, 994–999.

    Article  PubMed  CAS  Google Scholar 

  2. Geng, M., Ji, J., and Regnier, F. E. (2000) Signature-peptide approach to detecting proteins in complex mixtures. J Chromatogr. A 870, 295–313.

    Article  PubMed  CAS  Google Scholar 

  3. Shevchenko, A., Chemushevich, I., Ens, W., et al. (1997) Rapid “de novo” peptide sequencing by a combination of nanoelectrospray, isotopic labeling and a quadrupole/timeof-flight mass spectrometer. Rapid Commun. Mass Spectrom. 11, 1015–1024.

    Article  PubMed  CAS  Google Scholar 

  4. Cagney, G. and Emili, A. (2002) De novo peptide sequencing and quantitative profiling of complex protein mixtures using mass-coded abundance tagging. Nat. Biotechnol. 20, 163–170.

    Article  PubMed  CAS  Google Scholar 

  5. Oda, Y., Huang, K., Cross, F. R., Cowburn, D., and Chait, B. T. (1999) Accurate quantitation of protein expression and site-specific phosphorylation. Proc. Natl. Acad. Sci. USA 96, 6591–6596.

    Article  PubMed  CAS  Google Scholar 

  6. Veenstra, T. D., Martinovic, S., Anderson, G. A., Pasa-Tolic, L., and Smith, R. D. (2000) Proteome analysis using selective incorporation of isotopically labeled amino acids. J. Am. Soc. Mass Spectrom. 11, 78–82.

    Article  PubMed  CAS  Google Scholar 

  7. Chen, X., Smith, L. M., and Bradbury, E. M. (2000) Site-specific mass tagging with stable isotopes in proteins for accurate and efficient protein identification. Anal. Chem. 72, 1134–1143.

    Article  PubMed  CAS  Google Scholar 

  8. Gu, S., Pan, S., Bradbury, E. M., and Chen, X. (2002) Use of deuterium-labeled lysine for efficient protein identification and peptide de novo sequencing. Anal. Chem. 74, 5774–5785.

    Article  PubMed  CAS  Google Scholar 

  9. Gu, S., Pan, S., Bradbury, E. M., and Chen, X. (2003) Precise peptide sequencing and protein quantification in the human proteome through in vivo lysine-specific mass tagging. J. Am. Soc. Mass Spectrom. 14, 1–7.

    Article  PubMed  CAS  Google Scholar 

  10. Zhu, H., Pan, S., Gu, S., Bradbury, E. M., and Chen, X. (2002) Amino acid residue specific stable isotope labeling for quantitative proteomics. Rapid Commun. Mass Spectrom. 16, 2115–2123.

    Article  PubMed  CAS  Google Scholar 

  11. Zhu, H., Hunter, T. C., Pan, S., Yau, P. M., Bradbury, E. M., and Chen, X. (2002) Residuespecific mass signatures for the efficient detection of protein modifications by mass spectrometry. Anal. Chem. 74, 1687–1694.

    Article  PubMed  CAS  Google Scholar 

  12. Pan, S., Gu, S., Bradbury, E. M., and Chen, X. (2003) Single peptide-based protein identification in human proteome through MALDI-TOF MS coupled with amino acids coded mass tagging. Anal. Chem. 75, 1316–1324.

    Article  PubMed  CAS  Google Scholar 

  13. Hunter, T. C., Yang, L., Zhu, H., Majidi, V., Bradbury, E. M., and Chen, X. (2001) Peptide mass mapping constrained with stable isotope-tagged peptides for identification of protein mixtures. Anal. Chem. 73, 4891–4902.

    Article  PubMed  CAS  Google Scholar 

  14. Donald, S. P., Sun, X. Y., Hu, C. A., et al. (2001) Proline oxidase, encoded by p53-induced gene-6, catalyzes the generation of proline-dependent reactive oxygen species. Cancer Res. 61, 1810–1815.

    PubMed  CAS  Google Scholar 

  15. Yu, J., Zhang, L., Hwang, P. M., Kinzler, K. W., and Vogelstein, B. (2001) PUMA induces the rapid apoptosis of colorectal cancer cells.Mol. Cell 7, 673–682.

    Article  PubMed  CAS  Google Scholar 

  16. Bae, W. and Chen, X. (2004) Proteomic study for the cellular responses to cadmium in Schizosaccharomyces pombe through amino acid-coded mass tagging and LC-MS/MS. Mol. Cell. Proteomics 3(6), 596–607.

    Article  PubMed  CAS  Google Scholar 

  17. Zhu, H., Hunter, T. C., Pan, S., Yau, P. M., Bradbury, E. M., and Chen, X. (2002) Residuespecific mass signatures for the efficient detection of protein modifications by mass spectrometry. Anal. Chem. 74, 1687–1694.

    Article  PubMed  CAS  Google Scholar 

  18. Gu, S. et al. (2004) Global investigation of p53-induced apoptosis through quantitative profiling regulatory proteins using comparative amino acid-coded tagging proteomics. Mol. Cell Proteomics 3, 998–1008.

    Article  PubMed  CAS  Google Scholar 

  19. Gu, S., Chen J., Dobos K. M., Bradbury E. M., Belisle J. T., and Chen X. (2003) Comprehensive proteomic profling of the membrane constituents of a Mycobacterium tuberculosis strain. Mol. Cell. Proteomics 1, 1284–1296.

    Google Scholar 

  20. Mortz, E., Krogh, T. N., Vorum, H., and and Gorg, A. (2001) Improved silver staining protocols for high sensitivity protein identification using matrix-assisted laser desorption/ ionization-time of flight analysis. Proteomics 1, 1359–1363.

    Article  PubMed  CAS  Google Scholar 

  21. Perkins, D. N., Pappin, D. J., Creasy, D. M., and Cottrell, J. S. (1999) Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 20, 3551–3567.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Chen, X. (2005). Amino Acid-Coded Mass Tagging for Quantitative Profiling of Differentially Expressed Proteins and Modifications in Cells. In: Walker, J.M. (eds) The Proteomics Protocols Handbook. Springer Protocols Handbooks. Humana Press. https://doi.org/10.1385/1-59259-890-0:393

Download citation

  • DOI: https://doi.org/10.1385/1-59259-890-0:393

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-343-5

  • Online ISBN: 978-1-59259-890-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics