Skip to main content

Probing Heme Protein-Ligand Interactions by UV/Visible Absorption Spectroscopy

  • Protocol
Protein-Ligand Interactions

Part of the book series: Methods in Molecular Biology ((MIMB,volume 305))

Abstract

Ultraviolet/visible (UV/vis) absorption spectroscopy is a powerful tool for steady-state and time-resolved studies of protein-ligand interactions. Prosthetic groups in proteins frequently have strong electronic absorbance bands that depend on the oxidation, ligation, and conformation states of the chromophores. They are also sensitive to conformational changes of the polypeptide chain into which they are embedded. Steady-state absorption spectroscopy provides information on ligand binding equilibria, from which the Gibbs free energy differences between the ligated and unligated states can be computed. Time-resolved absorption spectroscopy allows one to detect short-lived intermediate states that may not get populated significantly under equilibrium conditions, but may nevertheless be of crucial importance for biological function. Moreover, the energy barriers that have to be surmounted in the reaction can be determined. In this chapter, we present a number of typical applications of steady-state and ns timeresolved UV/vis absorption spectroscopy in the study of ligand binding to the central iron in heme proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Weber G. (1992) Protein Interactions, Chapman & Hall, New York.

    Google Scholar 

  2. Antonini E. and Brunori M. (1971) Hemoglobin and Myoglobin in Their Reactions with Ligands, North-Holland, Amsterdam.

    Google Scholar 

  3. Cantor C. R. and Schimmel P. R. (1980) Biophysical Chemistry, III, W. H. Freeman and Company, New York.

    Google Scholar 

  4. Nienhaus K., Lamb D. C., Deng P., and Nienhaus G. U. (2002) The effect of ligand dynamics on heme electronic transition band III in myoglobin. Biophys. J. 82, 1059–1067.

    Article  CAS  Google Scholar 

  5. Douzou P. (1977) Cryobiochemistry, Academic Press, London.

    Google Scholar 

  6. Marriot G. (1998) Caged Compounds. Methods Enzymology 291.

    Google Scholar 

  7. Leuba S. H. and Zlatanova J. (2001) Biology at the Single Molecule Level, Pergamon, Oxford, UK.

    Google Scholar 

  8. Rigler R., Orrit M., and Basche T. (2002) Single Molecule Spectroscopy, Springer-Verlag, New York.

    Google Scholar 

  9. Moore J. W. and Pearson R. G. (1981) Kinetics and Mechanism, John Wiley & Sons, New York.

    Google Scholar 

  10. Hammes G. G. (2000) Thermodynamics and Kinetics for the Biological Sciences, Wiley-Interscience, New York.

    Google Scholar 

  11. Hammes G. G. (1978) Principles of chemical kinetics, Academic Press, London.

    Google Scholar 

  12. Hammes G. G. (1974) Techniques of Chemistry, Wiley-Interscience, New York.

    Google Scholar 

  13. Gutfreund H. (1995) Kinetics for the life sciences, University Press, Cambridge.

    Book  Google Scholar 

  14. Steinbach P. J., Chu K., Frauenfelder H., Johnson J. B., Lamb D. C., Nienhaus G. U., Sauke T. B., and Young R. D. (1992) Determination of rate distributions from kinetic experiments. Biophys. J. 61, 235–245.

    Article  CAS  Google Scholar 

  15. Ormos P., Szaraz S., Cupane A., and Nienhaus G. U. (1998) Structural factors controlling ligand binding to myoglobin: a kinetic hole-burning study. Proc. Natl. Acad. Sci. USA 95, 6762-6727.

    Article  CAS  Google Scholar 

  16. Müller J. D., McMahon B. H., Chien E. Y., Sligar S. G., and Nienhaus G. U. (1999) Connection between the taxonomic substates and protonation of histidines 64 and 97 in carbonmonoxy myoglobin. Biophys. J. 77, 1036–1051.

    Article  Google Scholar 

  17. Ostermann A., Waschipky R., Parak F. G., and Nienhaus G. U. (2000) Ligand binding and conformational motions in myoglobin. Nature 404, 205–208.

    Article  CAS  Google Scholar 

  18. Bourgeois D., Vallone B., Schotte F., Arcovito A., Miele A. E., Sciara G., Wulff M., Anfinrud P., and Brunori M. (2003) Complex landscape of protein structural dynamics unveiled by nanosecond Laue crystallography: Watching a protein as it functions with 150-ps time-resolved X-ray crystallography. Proc. Natl. Acad. Sci. USA 100, 8704–8709.

    Article  CAS  Google Scholar 

  19. Brunori M., Cutruzzola F., Savino C., Travaglini-Allocatelli C., Vallone B., and Gibson Q. H. (1999) Structural dynamics of ligand diffusion in the protein matrix: A study on a new myoglobin mutant Y(B10) Q(E7) R(E10). Biophys. J. 76, 1259–1269.

    Article  CAS  Google Scholar 

  20. Chu K., Vojtchovsky J., McMahon B. H., Sweet R. M., Berendzen J., and Schlichting I. (2000) Structure of a ligand-binding intermediate in wild-type carbonmonoxy myoglobin. Nature 403, 921–923.

    Article  CAS  Google Scholar 

  21. Nienhaus K., Deng P., Kriegl J. M., and Nienhaus G. U. (2003) Structural Dynamics of Myoglobin: The Effect of Internal Cavities on Ligand Migration and Binding. Biochemistry 42, 9647–9658.

    Article  CAS  Google Scholar 

  22. Schotte F., Lim M., Jackson T. A., Smirnov A. V., Soman J., Olson J. S., Phillips G. N., Jr., Wulff M., and Anfinrud P. A. (2003) Watching a protein as it functions with 150-ps time-resolved X-ray crystallography. Science 300, 1944–1947.

    Article  CAS  Google Scholar 

  23. Scott E. E., Gibson Q. H., and Olson J. S. (2001) Mapping the pathways for O2 entry into and exit from myoglobin. J. Biol. Chem. 276, 5177–5188.

    Article  CAS  Google Scholar 

  24. Kriegl J. M., Bhattacharyya A. J., Nienhaus K., Deng P., Minkow O., and Nienhaus G. U. (2002) Ligand binding and protein dynamics in neuroglobin. Proc. Natl. Acad. Sci. USA 99, 7992–7997.

    Article  CAS  Google Scholar 

  25. Nienhaus K., Kriegl J. M., and Nienhaus G. U. (2004) Structural dynamics in the active site of murine neuroglobin and its effects on ligand binding. J. Biol. Chem. 279, 22,944–22,952.

    Article  CAS  Google Scholar 

  26. Pesce A., Nardini M., Ascenzi P., Geuens E., Dewilde S., Moens L., Bolognesi M., Riggs A. F., Hale A., Deng P., Nienhaus G. U., Olson J. S., and Nienhaus K. (2004) ThrE11 regulates O2 affinity in cerebratulus lacteus minihemoglobin. J. Biol. Chem. 279, 33,662–33,672.

    Article  CAS  Google Scholar 

  27. Lide D. R. (1994) Handbook of Chemistry and Physics, CRC Press, Boca Raton, FL.

    Google Scholar 

  28. Orii Y. and Morita M. (1977) Measurement of the pH of frozen buffer solutions by using pH indicators. J. Biochem. 81, 163–168.

    Article  CAS  Google Scholar 

  29. Ansari A., Jones C. M., Henry E. R., Hofrichter J., and Eaton W. A. (1993) Photoselection in polarized photolysis experiments on heme proteins. Biophys. J. 64, 852–868.

    Article  CAS  Google Scholar 

  30. Ansari A. and Szabo A. (1993) Theory of photoselection by intense light pulses. Influence of reorientational dynamics and chemical kinetics on absorbance measurements. Biophys. J. 64, 838–851.

    Article  CAS  Google Scholar 

  31. Barth A. and Corrie J. E. (2002) Characterization of a new caged proton capable of inducing large pH jumps. Biophys. J. 83, 2864–2871.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Nienhaus, K., Nienhaus, G.U. (2005). Probing Heme Protein-Ligand Interactions by UV/Visible Absorption Spectroscopy. In: Ulrich Nienhaus, G. (eds) Protein-Ligand Interactions. Methods in Molecular Biology, vol 305. Humana, Totowa, NJ. https://doi.org/10.1385/1-59259-912-5:215

Download citation

  • DOI: https://doi.org/10.1385/1-59259-912-5:215

  • Publisher Name: Humana, Totowa, NJ

  • Print ISBN: 978-1-58829-372-5

  • Online ISBN: 978-1-59259-912-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics