Skip to main content

Development of an Interferon-Based Cancer Vaccine Protocol

Application to Several Types of Murine Cancers

  • Protocol
Interferon Methods and Protocols

Part of the book series: Methods in Molecular Medicine™ ((MIMM,volume 116))

Abstract

A protocol for the development of cancer vaccines is presented. The protocol is based upon the long-term in vitro treatment of cancer cells with interferon (IFN)-α to create cancer vaccine cells. This protocol has been used to develop cancer vaccines in mice against B16 melanoma, RM-1 prostate cancer, and P388 lymphocytic leukemia. A detailed description of the protocol is presented. Important considerations that are discussed include the method of selection of potential cancer vaccine cells that would make good models for cancer vaccines for human cancers, the effects of in vitro IFN-α treatment concentration on the efficacy of generated cancer vaccine cells, the differential ability of cancer cells to become efficacious cancer vaccine cells in response to IFN-α treatment, the determination of the effectiveness of ultraviolet-light killing of various cancer cell types for generating cancer vaccine cells, and the methods of evaluation of statistical significance of the data obtained. Potential problems also are addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. American Cancer Society home page: http://www.cancer.org/docroot/home/index.asp

  2. Jafee, E. M. (1999) Immunotherapy of cancer. Ann. NY Acad. Sci. 886, 67–72.

    Article  Google Scholar 

  3. Nabel, G. J. (2004) Genetic, cellular and immune approaches to disease therapy: past and future. Nat. Med. 10, 135–141.

    Article  PubMed  CAS  Google Scholar 

  4. Thomas, M. C., Greten, T. F., Pardoll, D. M., and Jaffee, E. M. (1998) Enhanced tumor protection by granulocyte-macrophage colony-stimulating factor expression at the site of an allogeneic vaccine. Hum. Gene Ther. 9, 835–843.

    Article  PubMed  CAS  Google Scholar 

  5. Dranoff G. (2003) GM-CSF-secreting melanoma vaccines. Oncogene 22, 3188–3192.

    Article  PubMed  CAS  Google Scholar 

  6. Nemunaitis, J. and Nemunaitis, J. (2003) Granulocyte-macrophage colony-stimulating factor gene-transfected autologous tumor cell vaccine: focus on non-small-cell lung cancer. Clin. Lung Cancer 5, 148–157.

    Article  PubMed  CAS  Google Scholar 

  7. Ma, W., Yu, H., Wang, Q., Jin, H., Solheim, J., and Labhasetwar, V. (2004) A novel approach for cancer immunotherapy: tumor cells with anchored superantigen SEA generate effective antitumor immunity. J. Clin. Immunol. 24, 294–301.

    Article  PubMed  CAS  Google Scholar 

  8. Liao, X., Li, Y., Bonini, C., Nair, S., Gilboa, E., Greenberg, P. D., and Yee, C. (2004) Transfection of RNA encoding tumor antigens following maturation of dendritic cells leads to prolonged presentation of antigen and the generation of high-affinity tumor-reactive cytotoxic T lymphocytes. Mol. Ther. 9, 757–764.

    Article  PubMed  CAS  Google Scholar 

  9. Hsueh, E. C., Essner, R., Foshag, L. J., Ollila, D. W., Gammon, G., O’Day, S. J., et al. (2002) Prolonged survival after complete resection of disseminated melanoma and active immunotherapy with a therapeutic cancer vaccine. J. Clin. Oncol. 20, 4549–4554.

    Article  PubMed  CAS  Google Scholar 

  10. Salem, M. L., Kadima, A. N., Zhou, Y., Nguyen, C. L., Rubinstein, M. P., Demcheva, M., et al. (2004) Paracrine release of IL-12 stimulates IFN-gamma production and dramatically enhances the antigen-specific T cell response after vaccination with a novel peptide-based cancer vaccine. J. Immunol. 172, 5159–5167.

    PubMed  CAS  Google Scholar 

  11. Slingluff, C. L. Jr., Petroni, G. R., Yamshchikov, G. V., Barnd, D. L., Eastham, S., Galavotti, H., et al. (2003) Clinical and immunological results of a randomized Phase II Trial of vaccination using four melanoma peptides either administered in granulocyte-macrophage colony-stimulating factor in adjuvant or pulsed on dendritic cells. J. Clin. Oncol. 21, 4016–4026.

    Article  PubMed  CAS  Google Scholar 

  12. Maraskovsky, E., Sjolander, S., Drane, D. P., Schnurr, M., Le, T. T., Mateo, L., et al. (2004) NY-ESO-1 protein formulated in ISCOMATRIX adjuvant is a potent anticancer vaccine inducing both humoral and CD8+ t-cell-mediated immunity and protection against NY-ESO-1+ tumors. Clin. Cancer Res. 10, 2879–2890.

    Article  PubMed  CAS  Google Scholar 

  13. Sinibaldi-Vallebona, P., Rasi, G., Pierimarchi, P., Bernard, P., Guarino, E., Guadagni, F., and Garaci, E. (2004) Vaccination with a synthetic nonapeptide expressed in human tumors prevents colorectal cancer liver metastases in syngeneic rats. Int. J. Cancer 110, 70–75.

    Article  PubMed  CAS  Google Scholar 

  14. Fleischmann, C. M., Wu, T. Y., and Fleischmann, W. R. Jr. (1997) B16 melanoma cells exposed in vitro to long-term IFN-α treatment (B16α cells) as activators of host cell tumor immunity in mice. J. Interferon Cytokine Res. 17, 37–43.

    Article  PubMed  CAS  Google Scholar 

  15. Wu, T. Y. and Fleischmann, W. R. Jr. (1998) Efficacy of B16 melanoma cells exposed in vitro to long-term IFN-α treatment (B16α cells) as a tumor vaccine in mice. J. Interferon Cytokine Res. 18, 829–839.

    Article  PubMed  CAS  Google Scholar 

  16. Wu, T. Y. and Fleischmann, W. R. Jr. (2001) Murine B16 melanoma vaccination-induced tumor immunity: identification of specific immune cells and functions involved. J. Interferon Cytokine Res. 21, 1117–1127.

    Article  PubMed  CAS  Google Scholar 

  17. Wu, T. Y. and Fleischmann, W. R. Jr. Unpublished observations.

    Google Scholar 

  18. Fidler, I. J. (1973) Selection of successive tumor lines for metastasis. Nature New Biol. 242, 148–149.

    PubMed  CAS  Google Scholar 

  19. Thompson, T. C., Southgate, J., Kitchener, G., and Land, H. (1989) Multi-stage carcinogenesis induced by ras and myc oncogenes in a reconstituted organ. Cell 56, 917–930.

    Article  PubMed  CAS  Google Scholar 

  20. Baley, P. A., Yoshida, K., Qian, W., Sehgal, I., and Thompson, T. C. (1995) Progression to androgen insensitivity in a novel in vitro mouse model for prostate cancer. J. Steroid Biochem. Mol. Biol. 52, 403–413.

    Article  PubMed  CAS  Google Scholar 

  21. Coveney, E., Clary, B., Philip, R., and Lyerly, K. (1996) Active immunotherapy with transiently transfected cytokine-secreting tumor cells inhibits breast cancer metastases in tumor-bearing animals. Surgery 120, 265–273.

    Article  PubMed  CAS  Google Scholar 

  22. Morecki, S., Lubina-Salomon, A., Slavin, S., and Nagler, A. (1998) Cytokine gene transduction into non-immunogeneic murine tumor cells. Cytokines Cell. Mol. Ther. 4, 87–94.

    PubMed  CAS  Google Scholar 

  23. Ozer. H. L. (1966) Purine pyrophosphorylase as a selective genetic marker in a mouse lymphoma, P388, in cell culture. J. Cell Physiol. 68, 61–68.

    Article  PubMed  CAS  Google Scholar 

  24. Evinger, M., Rubinstein, M., and Pestka, S. (1981) Antiproliferative and antiviral activities of human leukocyte interferons. Arch. Biochem. Biophys. 210, 319–329.

    Article  PubMed  CAS  Google Scholar 

  25. Ortaldo, J. R., Mantovani, A., Hobbs, D., Rubinstein, M., Pestka, S., and Herberman, R. B. (1983) Effects of several species of human leukocyte interferon on cytotoxic activity of NK cells and monocytes. Int. J. Cancer 31, 285–289.

    Article  PubMed  CAS  Google Scholar 

  26. Rehberg, E., Kelder, B., Hoal, E. G., and Pestka, S. (1982) Specific molecular activities of recombinant and hybrid leukocyte interferons. J. Biol. Chem. 257, 11,497–11,502

    PubMed  CAS  Google Scholar 

  27. Ortaldo, J. R., Mason, A., Rehberg, E., Kelder, B., Harvey, C., Oscheroff, P., et al. (1983) Augmentation of NK activity with recombinant and hybrid recombinant human leukocyte interferons, in The Biology of the Interferon System (DeMaeyer E. and Schellekens, H., eds.), Elsevier Science Publishers B. V., Amsterdam, Netherlands, pp. 353–358.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc.

About this protocol

Cite this protocol

Fleischmann, W.R., Wu, T.G. (2005). Development of an Interferon-Based Cancer Vaccine Protocol. In: Carr, D.J.J. (eds) Interferon Methods and Protocols. Methods in Molecular Medicine™, vol 116. Humana Press. https://doi.org/10.1385/1-59259-939-7:151

Download citation

  • DOI: https://doi.org/10.1385/1-59259-939-7:151

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-418-0

  • Online ISBN: 978-1-59259-939-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics