Skip to main content

Aequorin as a Reporter Gene

  • Protocol
Arabidopsis Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 323))

Abstract

Reporter proteins allow one to monitor cellular parameters that are involved in signal transduction, development, metabolic processes, and transport. There are targeting strategies available to direct the indicator protein exactly to the locale inside the organism from which information is desired. This circumvents experimental reductionism and allows experimentation with whole intact and undisturbed organisms. The outstanding advantages of self-reporting organisms make it worth to shoulder cost- and time-consuming molecular work. Here, the luminescent Ca2+ indicator aequorin is introduced and a rough guideline is given from early planning the molecular work and assembling an experimental setup to experimentation with luminescent Arabidopsis, data processing, and control experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Knight, M. R., Campbell, A. K., Smith, S. M., and Trewavas, A. J. (1991) Transgenic plant aequorin reports the effects of touch and cold-shock and elicitors on cytoplasmic calcium. Nature 352, 524–526.

    Article  CAS  PubMed  Google Scholar 

  2. Plieth, C. (2001) Plant calcium signaling and monitoring — pros and cons and recent experimental approaches. Protoplasma 218, 1–23.

    Article  CAS  PubMed  Google Scholar 

  3. Miyawaki, A. (2003) Visualization of the spatial and temporal dynamics of intracellular signaling. Developmental Cell 4, 295–305.

    Article  CAS  PubMed  Google Scholar 

  4. Zhang, J., Campbell, R. E., Ting, A. Y., and Tsien, R. Y. (2002) Creating new fluorescent probes for cell biology. Nat. Rev. Mol. Cell Biol. 3, 906–918.

    Article  CAS  PubMed  Google Scholar 

  5. Shimomura, O., Musicki, B., and Kishi, Y. (1989) Semi-synthetic aequorins with improved sensitivity to Ca2+ ions. Biochem. J. 261, 913–920.

    CAS  PubMed  Google Scholar 

  6. Thomas, M. V. (1982) Techniques in calcium research. Academic Press, London, New York, Paris, San Diego, San Francisco, Sao Paulo, Sydney, Tokyo, Toronto.

    Google Scholar 

  7. Fricker, M. D., Plieth, C., Knight, H., Blancaflor, E., Knight, M. R., White, N., and Gilroy, S. (1999) Fluorescence and luminescence techniques to probe ion activities in living plant cells in: Fluorescent and luminescent probes for biological activity. Academic Press, San Diego, (Mason, B. ed.) pp. 569–596.

    Chapter  Google Scholar 

  8. Campbell, A. K., Patel, A., Houston, W. A. J., Scolding, N. J., Frith, S., Morgan, B. P., and Compston, D. A. S. (1989) Photoproteins as indicators of intracellular free Ca2+. J. Bioluminecence Chemiluminescence 4, 463–474.

    Article  CAS  Google Scholar 

  9. Haugland, R. P. (2003) Handbook of fluorescent probes and research chemicals. Molecular Probes Inc., Eugene OR.

    Google Scholar 

  10. http://www.probes.com/handbook/sections/2000.html.

  11. Fricker, M. D., Parsons, A., Tlalka, M., Blancaflor, E., Gilroy, S., Meyer, A., and Plieth, C. (2001) Fluorescent probes for living plant cells. in: Hawes, C. and Satiai-Jeunemaitre, B. (ed.) Plant Cell Biology: A Practical Approach, 2nd ed., Oxford University Press, Oxford, pp. 35–84.

    Google Scholar 

  12. Brandizzi, F., Fricker, M., and Hawes, C. (2002) A greener world: revolution in plant bioimaging. Nat. Rev. Mol. Cell Biol. 3, 520–530.

    Article  CAS  PubMed  Google Scholar 

  13. Kiegle, E., Moore, C. A., Haseloff, J., Tester, J., and Knight, M. R. (2000) Cell-type-specific calcium responses to drought salt and cold in Arabidopsis roots. Plant J. 23, 267–278.

    Article  CAS  PubMed  Google Scholar 

  14. Inouye, S., Noguchi, M., Sakaki, Y., et al. (1985) Cloning and sequence analysis of cDNA for the luminescent protein aequorin. Proc. Nat. Acad. Sci. USA 82, 3154–3158.

    Article  CAS  PubMed  Google Scholar 

  15. Prasher, D., McCann, R. O., and Cormier, M. J. (1985) Cloning and expression of the cDNA coding for aequorin a bioluminescent calcium-binding protein. Biochem. Biophys. Res. Comm. 126, 1259–1268.

    Article  CAS  PubMed  Google Scholar 

  16. Haseloff, J., Siemering, K. R., Prasher, D. C., and Hodge, S. (1997) Removal of a cryptic intron and subcellular localization of green fluorescent protein are required to mark transgenic Arabidopsis plants brightly. Proc. Natl. Acad. Sci. USA 94, 2122–2127.

    Article  CAS  PubMed  Google Scholar 

  17. Baubet, V., Mouellic, H. L., Campbell, A. K., Lucas-Meunier, E., Fossier, P., and Brulet, P. (2000) Chimeric green fluorescent protein-aequorin as bioluminescent Ca2+ reporters at the single cell level. Proc. Nat. Acad. Sci. USA 97, 7260–7265.

    Article  CAS  PubMed  Google Scholar 

  18. Moore, C. A. (2000) An investigation into cellular and molecular aspects of calcium-based specificity of signaling in Arabidopsis thaliana. D. Phil. thesis, University of Oxford.

    Google Scholar 

  19. Logan, D. C. and Knight, M. R. (2003) Mitochondrial and cytosolic calcium dynamics are differentially regulated in plants. Plant Physiol. 133, 21–24.

    Article  CAS  PubMed  Google Scholar 

  20. Gao, D., Trewavas, A. J. T., Knight, M. R., Sattelmacher, B., and Plieth, C. (2004) Self-reporting Arabidopsis thaliana expressing pH-and [Ca2+]-indicators unveil ion dynamics in the cytoplasm and in the apoplast under abiotic stress. Plant Physiol. 134, 898–908.

    Article  CAS  PubMed  Google Scholar 

  21. Baum, G., Long, J. C., Jenkins, G. I., and Trewavas, A. J. (1999) Stimulation of the blue light phototropic receptor NPH1 causes a transient increase in cytosolic Ca2+. Proc. Nat. Acad. Sci. USA 96, 13,554–13,559.

    Article  CAS  PubMed  Google Scholar 

  22. Plieth, C. and Trewavas, A. J. (2002) Reorientation of seedlings in the earth’s gravitational field induces cytosolic calcium transients. Plant Physiol. 129, 786–796.

    Article  CAS  PubMed  Google Scholar 

  23. Shimomura, O., Kishi, Y., and Inouye, S. (1993) The relative rate of aequorin regeneration from apoaequorin and coelenterazine analogues. Biochem. J. 296, 549–551.

    CAS  PubMed  Google Scholar 

  24. Shimomura, O. (1991) Preparation and handling of aequorin solutions for the measurement of cellular calcium. Cell Calcium 12, 635–643.

    Article  CAS  PubMed  Google Scholar 

  25. Shimomura O. (1995) Cause of spectral variation in the luminescence of semisynthetic aequorins. Biochem. J. 306, 537–543.

    CAS  PubMed  Google Scholar 

  26. Haddock, S. H. D. and Case, J. F. (1999) Bioluminescence spectra of shallow and deap-sea gelatinous zooplankton: ctenophores, medusae and siphonophores. Marine Biol. 133, 571–582.

    Article  Google Scholar 

  27. Blinks, J. R., Wier, W. G., Hess, P., and Prendergast, F. G. (1982) Measurement of Ca2+ concentrations in living cells. Prog. Biophys. Mol. Biol. 40, 1–114.

    Article  CAS  PubMed  Google Scholar 

  28. Fagan, T. F., Ohmiya, Y., Blinks, J. R., Inouye, S., and Tsuji, F. I. (1993) Cloning, expression and sequence analysis of cDNA for the Ca2+-binding photoprotein, mitrocomin. FEBS Lett. 333, 301–305.

    Article  CAS  PubMed  Google Scholar 

  29. Inouye, S. and Tsuji, F. L. (1993) Cloning and sequence analysis of cDNA for the Ca(2+)-activated photoprotein, clytin. FEBS Lett. 315, 343–346.

    Article  CAS  PubMed  Google Scholar 

  30. Liu, C-J., Vysotski, E. S., Chen, C-J., Rose, J. P., Lee, J., and Wang, B-C. (2000) Structure of the Ca2+-regulated photoprotein obelin at 1.7 å resolution determined directly from its sulfur substructure. Protein Sci. 9, 2085–2093.

    Article  CAS  PubMed  Google Scholar 

  31. Illarionov, B. A., Frank, L. A., Illaronova, V. A., Bondar, V. S., Vysotski, E. S., and Blinks, J. R. (2000) Recombinant obelin: cloning and expression of cDNA, purification, and characterization as a calcium indicator, in Methods in Enzymology-Bioluminescence and Chemiluminescence Part C. Ziegler, M. M., and Baldwin, T. O. (ed.), Academic Press London, pp. 223–249.

    Chapter  Google Scholar 

  32. Markova, S. V., Vysotski, E. S., Blinks, J. R., Burakova, L. P., Wang, B-C., and Lee, J. (2002) Obelin from the bioluminescent marine hydroid Obelia geniculata: cloning, expression, and comparison of some properties with those of other Ca2+-regulated photoproteins. Biochemistry 41, 2227–2236.

    Article  CAS  PubMed  Google Scholar 

  33. Deng, L., Vysotski, E. S., Liu, Z-J., et al. (2001) Structural basis of the emission of violet bioluminescence from a W92F obelin mutant. FEBS Lett. 506, 281–285.

    Article  CAS  PubMed  Google Scholar 

  34. Kendall, J. M., Sala-Neby, G., Ghalaut, V., Dormer, R. L., and Campbell, A. K. (1992) Engineering the Ca2+-activated photoprotein aequorin with reduced affinity for calcium. Biochem. Biophys. Res. Comm. 187, 1091–1097.

    Article  CAS  PubMed  Google Scholar 

  35. van der Luit, A., Olivari, C., Haley, A., Knight, M. R., and Trewavas, A. J. (1999) Distinct calcium signaling pathways regulate calmodulin gene expression in tobacco. Plant Physiol. 121, 705–714.

    Article  Google Scholar 

  36. Chiesa, A., Rapizzi, E., Tosello, V., Pinton, P., de Virgilio, M., Fogarty, K. E., and Rizzuto, R. (2001) Recombinant aequorin and green fluorescent protein as valuable tools in the study of cell signaling. Biochem. J. 355, 1–12.

    Article  CAS  PubMed  Google Scholar 

  37. Campbell, A. K., Trewavas, A. J., and Knight, M. R. (1996) Calcium imaging shows differential sensitivity to cooling and communication in luminous transgenic plants. Cell Calcium 19, 211–218.

    Article  CAS  PubMed  Google Scholar 

  38. Knight, M. R., Read, N. D., Campbell, A. K., and Trewavas, A. J. (1993) Imaging calcium dynamics in living plants using semi-synthetic recombinant aequorins. J. Cell Biol. 121, 83–90.

    Article  CAS  PubMed  Google Scholar 

  39. Knight, H. and Knight, M. R. (1995) Recombinant Aequorin methods for intracellular calcium measurement in plants. Meth. Cell Biol. 49, 201–216.

    Article  CAS  Google Scholar 

  40. Knight, H., Trewavas, A. J., and Knight, M. R. (1997) Recombinant aequorin methods for measurement of intracellular calcium in plants. Plant Mol. Biol. Man. C4, 1–22.

    Google Scholar 

  41. Mithöfer, A. and Mazars, C. (2002) Aequorin-based measurements of intracellular Ca2+-signatures in plant cells. in: http://www.biologicalprocedures.com (ed.) Biological Procedures Online 4, 105–118.

    Article  PubMed  Google Scholar 

  42. Gleave, A. P. (1992) A versatile binary vector system with a T-DNA organisational structure conducive to efficient integration of cloned DNA into the plant genome. Plant Mol. Biol. 20, 1203–1207.

    Article  CAS  PubMed  Google Scholar 

  43. Pietrzak, M., Shillito, R. D., Hohn, T., and Potrykus, I. (1986) Expression in plants of two bacterial antibiotic genes after protoplast transformation with a new plant expression vector. Nucleic Acids Res. 14, 5857–5868.

    Article  CAS  PubMed  Google Scholar 

  44. Aikens, R. (1999) Properties of low-light-level slow-scan detectors, in Fluorescent and Luminescent Probes for Biological Activity. Academic Press, San Diego, (Mason, B ed.) pp. 507–516.

    Chapter  Google Scholar 

  45. Creton, R., Kreiling, J. A., and Jaffe, L. F. (1999) Calcium imaging with chemiluminescence. Microscopy Res. Technique 46, 390–397.

    Article  CAS  Google Scholar 

  46. Stanley, P. E. (2000) Commercially available luminometers and low-level light imaging device in Methods in Enzymology—Bioluminescence and Chemiluminescence Part C. (Ziegler, M. M., and Baldwin, T. O., ed.) Academic Press, London, pp. 96–103.

    Chapter  Google Scholar 

  47. Ellis, R. J. and Wright, A. G. (1999) Optimal use of photomultipliers for chemiluminescence and bioluminescence applications. Luminescence 14, 11–18.

    Article  CAS  PubMed  Google Scholar 

  48. Tomkins, P. and Lyons, A. (1999) Properties of low-light-level intensified cameras, in Fluorescent and Luminescent Probes for Biological Activity. Academic Press, San Diego, (Mason, B., ed.) 491–506.

    Chapter  Google Scholar 

  49. Ausubel, F. M., Brent, R., Kingston, R. E., Moore, D. D., Seidman, J. G., Smith, J. A., and Struhl, K. (1999) Short Protocols in Molecular Biology. Wiley, New York.

    Google Scholar 

  50. Sambrook, J. and Russell, D. (2001) Molecular cloning — a laboratoy manual. Vol. 1–3; 3rd Ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

    Google Scholar 

  51. Plieth, C. (2004) Luminescence measuring chamber, in Christian-Albrechts-Universität, Kiel, Patent No. 103 18 994.7 B3 2004.03.11. Deutsches Patent-und Markenamt, München.

    Google Scholar 

  52. Plieth, C., Sattelmacher, B., and Hansen, U-P. (1997) Cytoplasmic Ca2+-H+-exchange buffers in green algae. Protoplasma 198, 107–124 and 199, 223 (correction).

    Article  CAS  Google Scholar 

  53. Plieth, C., Hansen, U-P., Knight, H., and Knight, M. R. (1999) Temperature sensing by plants: the primary mechanisms of signal perception and calcium response. Plant J. 18, 491–497.

    Article  CAS  PubMed  Google Scholar 

  54. Plieth, C., Sattelmacher, B., and Knight, M. R. (2000) Ammonium uptake and cellular alkalization in roots of Arabidopsis thaliana: the involvement of cytoplasmic calcium. Physiologia Plantarum 110, 518–523.

    CAS  Google Scholar 

  55. Knight, M. R., Smith, S. M., and Trewavas, A. J. (1992) Wind-induced plant motion immediately increases cytosolic calcium. Proc. Nat. Acad. Sci. USA 89, 4967–4971.

    Article  CAS  PubMed  Google Scholar 

  56. Russell, A. J., Knight, M. R., Cove, D. J., Knight, C. D., Trewavas, A. J., and Wang, T. L. (1996) The moss Physcomitrella patens transformed with apoaequorin cDNA responds to cold shock mechanical perturbation and pH with transient increases in cytoplasmic calcium. Transgen. Res. 5, 167–170.

    Article  CAS  Google Scholar 

  57. Johnson, C. H., Knight, M. R., Kondo, T., Masson, P., Sedbrook, J., Haley, A., and Trewawas, A. (1995) Circadian oscillations of cytosolic and chloroplastic free calcium in plants. Science 269, 1863–1865.

    Article  CAS  PubMed  Google Scholar 

  58. Wood, N. T., Haley, A., Viry-Moussaid, Johnson, C. H., van der Luit, A., and Trewavas, A. J. (2001) The calcium rhythms of different cell types oscillate with different circadian phases. Plant Phys. 125, 787–796.

    Article  CAS  Google Scholar 

  59. Brini, M., Pinton, P., Pozzan, T., and Rizzuto, R. (1999) Targeted recombinant aequorins: Tools for monitoring [Ca2+] in the various compartments of a living cell. Micro. Res. Technique 46, 380–389.

    Article  CAS  Google Scholar 

  60. Campbell, A. K. (1988) Chemiluminescence — principles and applications in biology and medicine. VCH and Ellis Horwood Ltd., New York.

    Google Scholar 

  61. Torrecilla, I., Leganes, F., Bonilla, I., and Fernandes-Pinas, F. (2000) Use of recombinant aequorin to study calcium homeostasis and monitor calcium transients in response to heat and cold shock in cyanobacteria. Plant Physiol. 123, 161–176.

    Article  CAS  PubMed  Google Scholar 

  62. Allen, G. J., Chu, S. P., Schumacher, K., et al. (2000) Alteration of stimulus-specific guard cell calcium oscillations and stomatal closing in Arabidopsis det3 mutant. Science 289, 2338–2342.

    Article  CAS  PubMed  Google Scholar 

  63. Love, J., Dodd, A. N., and Webb, A. A. R. (2004) Circadian and diurnal calcium oscillations encode photoperiodic information in Arabidopsis. Plant Cell 16, 956–966.

    Article  CAS  PubMed  Google Scholar 

  64. Watkins, A. J. and Campbell, A. K. (1993) Requirement of the C-terminal proline residue for stability of the Ca2+-activated photoprotein aequorin. Biochem. J. 293, 181–185.

    CAS  PubMed  Google Scholar 

  65. Llinás, R., Sugimori, M., and Silver, R. B. (1992) Microdomains of high calcium concentration in a presynaptic terminal. Science 256, 677–679.

    Article  PubMed  Google Scholar 

  66. Gonzalez-Trueba, G., Paradisi, C., and Zoratti, M. (1996) Synthesis of coelenterazine. Anal. Biochem. 240, 308–310.

    Article  CAS  PubMed  Google Scholar 

  67. Sedbrook, J. C., Kronebusch, P. J., Borisy, G. G., Trewavas, A. J., and Masson, P. H. (1996) Transgenic Aequorin reveals organ-specific cytosolic Ca2+ responses to anoxia in Arabidopsis thaliana seedlings. Plant Physiol. 111, 243–257.

    Article  CAS  PubMed  Google Scholar 

  68. Mason, B. (1999) Fluorescent and luminescent probes for biological activity. Academic Press, San Diego.

    Google Scholar 

  69. Hawes, C., Saint-Jore, C., Martin, B., and Zheng, H-Q. (2001) ER confirmed as the location of mystery organelles in Arabidopsis plants expressing GFP. Trends Plant Sci. 6, 245–246.

    Article  CAS  PubMed  Google Scholar 

  70. Kaletta, K., Kunze, I., Kunze, G., and Köck, M. (1998) The peptide HDEF as a new retention signal is necessary and sufficient to direct proteins to the endoplasmic reticulum. FEBS Lett. 434, 377–381.

    Article  CAS  PubMed  Google Scholar 

  71. Jedd, G. and Chua, N-H. (2002) Visualization of peroxisomes in living plant cells reveals acto-myosin dependent cytoplasmic streaming and peroxisome budding. Plant Cell Physiol. 43, 384–392.

    Article  CAS  PubMed  Google Scholar 

  72. Mano, S., Nakamori, C., Hayashi, M., Kato, A., Kondo, M., and Nishimura, M. (2002) Distribution and characterization of peroxisomes in Arabidopsis by visualization with GFP: Dynamic morphology and actin-dependent movement. Plant Cell Physiol. 43, 331–341.

    Article  CAS  PubMed  Google Scholar 

  73. Hayashi, M., Nito, K., Toriyama-Kato, K., Kondo, M., Yamaya, T., and Nishimura, M. (2000) AtPex14p maintains peroxisomal functions by determining protein targeting to three kinds of plant peroxisomes. EMBO J. 19, 5701–5710.

    Article  CAS  PubMed  Google Scholar 

  74. Frigerio, L., Ombretta, F., Felipe, D. H., Neuhaus, J-M., and Vitale, A. (2001) The C-terminal tetrapeptide of phaseolin is sufficient to target green fluorescent protein to the vacuole. J. Plant Physiol. 158, 400–503.

    Article  Google Scholar 

  75. Neuhaus, J-M. (2000) GFP as a marker for vacuoles in plants, in Annual Plant Reviews: Vacuolar Compartments. Vol 5, (Robinson, DG ed.) Sheffield Academic Press, Sheffield, UK. pp. 254–269.

    Google Scholar 

  76. Di Sansebastiano, G-P., Paris, N., Marc-Martin, S., and Neuhaus, J-M. (1998) Specific accumulation of GFP in a non-acidic vacuolar compartment via a C-terminal propeptide-mediated sorting pathway. Plant J. 15, 449–457.

    Article  PubMed  Google Scholar 

  77. Brini, M., Marsault, R., Bastianutto, C., Alvarez, J., Pozzan, J., and Rizzuto, R. (1995) Transfected aequorin in the measurement of cytosolic Ca2+ concentration [Ca2+]c. A critical evaluation. J. Biolog. Chem. 270, 9896–9903.

    Article  CAS  Google Scholar 

  78. Gonzalez, D. G. and Ward, W. W. (2000) Large Scale Purification of recombinant green fluorescent protein from Escherichia coli. Methods in Enzymol. 305, 212–223.

    Article  CAS  Google Scholar 

  79. Ward, W. W., Swiatek, G. C., and Gonzalez, D. G. (2000) Green fluorescent protein in biotechnology education. Meth. Enzymol. 305, 672–680.

    Article  CAS  PubMed  Google Scholar 

  80. Shimomura, O. and Inouye, S. (1999) The in situ regenration and extraction of recombinant aequorin from Escherichia coli cells and the purification of extracted aequorin. Protein Expression Purification 16, 91–95.

    Article  CAS  PubMed  Google Scholar 

  81. Shrestha, S., Paeng, I. R., Deo, S. K., and Daunert, S. (2002) Cystein-free mutant of aequorin as a photolabel in immunoassay development. Bioconjugate Chem. 13, 269–275.

    Article  CAS  Google Scholar 

  82. Blinks, J. R., Mattingly, P. H., Jewell, B. R., van-Leeuwen, M., Harrer, G. C., and Allen, D. G. (1997) Practical aspects of the use of aequorin as a calcium indicator: assay preparation microinjection and interpretation of signals. Meth. Enzymol. 57, 292–328.

    Article  Google Scholar 

  83. Gong, M., van der Luit, A. H., Knight, M. R., and Trewavas, A. J. (1998) Heat-shock induced changes in intracellular Ca2+ level in tobacco seedlings in relation to thermotolerance. Plant Physiol. 116, 429–437.

    Article  CAS  Google Scholar 

  84. Cormier, M. J., Prasher, D. C., Longiaru, M., and McCann, R. O. (1989) The enzymology and molecular biology of the Ca2+-activated photoprotein aequorin. Photochem. Photobiol. 49, 509–512.

    Article  CAS  PubMed  Google Scholar 

  85. Rees, J. F., de Wergifosse, B., Noiset, O., Dubuisson, M., Janssens, B., and Thompson, E. M. (1998) The origins of marine bioluminescence: turning oxygen defence mechanisms into deep-sea communication tools. J. Exper. Biol. 201, 1211–1221.

    CAS  Google Scholar 

  86. Haddock, S. H., Rivers, T. J., and Robinson, B. H. (2001) Can coelenterates make coelenterazine? Dietary requirements for luciferin in cnidarian bioluminescence. Proc. Nat. Acad. Sci. USA 98, 11,148–11,151.

    Article  CAS  PubMed  Google Scholar 

  87. de Wergifosse, B., Noidet, O., Dubuisson, M., Marchand-Brynaert, J., Baguet, F., and Rees, J. F. (1999) A new function for coelenterazine oxidation product supports the non-bioluminescent evolutionary origin of the luciferin, in Bioluminescence and Chemiluminescence—Perspectives for the 21st Century. Wiley, New York, (Roda, A., Pazzagli, M., Kricka, L. J., and Stanley, P. E. (ed.) pp. 396–399.

    Google Scholar 

  88. Müller, T., Davies, E. V., and Campbell, A. K. (1989) Pholasin chemiluminecence detects mostly superoxide anion released from human neutrophils. J. Bioluminescence Chemiluminescence 3, 105–113.

    Article  Google Scholar 

  89. Roberts, P. A., Knight, J., and Campbell, A. K. (1987) Pholasin—a bioluminescent indicator for detecting activation of single neutrophils. Analy. Biochem. 160, 139–148.

    Article  CAS  Google Scholar 

  90. Bassot, J. M. and Nicolas, M. T. (1995) Bioluminescence in scale-worm photosomes: the photoprotein Polynoïdin is specific for the detection of superoxide radicals. Histochem. Cell Biol. 104, 199–210.

    Article  CAS  PubMed  Google Scholar 

  91. Colepicolo, P., Camarero, VCPC., Nicolas, M. T., Bassot, J. M., Karnovsky, M. L., and Hastings, J. W. (1990) A sensitive and specific assay for superoxide anion released by neutrophils or macrophages based on bioluminescence of polynoïdin. Analyt. Biochem. 184, 369–374.

    Article  CAS  PubMed  Google Scholar 

  92. Price, A. H., Taylor, A., Ripley, S. J., Griffiths, A., Trewavas, A. J., and Knight, M. R. (1994) Oxidative signals in tobacco increase cytosolic calcium. Plant Cell 6, 1301–1310.

    Article  CAS  PubMed  Google Scholar 

  93. Clayton, H., Knight, M. R., Knight, H., McAinsh, M. R., and Hetherington, A. M. (1999) Dissection of the ozone-induced calcium signature. Plant J. 17, 575–579.

    Article  CAS  PubMed  Google Scholar 

  94. Chandra, S. and Low, P. S. (1997) Measurement of Ca2+ fluxes during elicitation of the oxidative burst in aequorin-transformed tobacco cells. J. Biol. Chem. 272, 28,274–28,280.

    Article  CAS  PubMed  Google Scholar 

  95. Blinks, J. R. (1990 ) Use of photoproteins as intracellular calcium indicators. Environ. Health Perspect. 84, 75–81.

    Article  CAS  PubMed  Google Scholar 

  96. Gilroy, S., Hughes, W. A., and Trewavas, A. J. (1989) A comparision between Quin-2 and Aequorin as indicators of cytoplasmic calcium levels in higher plant cell protoplasts. Plant Physiol. 90, 482–491.

    Article  CAS  PubMed  Google Scholar 

  97. Shimomura, O. and Johnson, F. H. (1970) Calcium binding, quantum yield and emitting molecule in aequorin bioluminiscence. Nature 227, 1356–1357.

    Article  CAS  PubMed  Google Scholar 

  98. Badminton, M. N., Sala-Newby, G. B., Kendall, J. M., and Campbell, A. K. (1995) Differences instability of recombinant apoaequorin with subcellular compartments. Biochem. and Biophys. Res. Comm. 217, 950–957.

    Article  CAS  Google Scholar 

  99. Cobbold, P. H. and Rink, T. J. (1987) Fluorescence and bioluminescence measurement of cytoplasmic free calcium. Biochem. J. 248, 313–328.

    CAS  PubMed  Google Scholar 

  100. Tsuji, F. I., Inouye, S., Goto, T., and Sakaki, Y. (1986) Site-specific mutagenesis of the calciuminding photoprotein aequorin. Proc. Nat. Acad. Sci. USA 83, 8107–8111.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc.

About this protocol

Cite this protocol

Plieth, C. (2006). Aequorin as a Reporter Gene. In: Salinas, J., Sanchez-Serrano, J.J. (eds) Arabidopsis Protocols. Methods in Molecular Biology™, vol 323. Humana Press. https://doi.org/10.1385/1-59745-003-0:307

Download citation

  • DOI: https://doi.org/10.1385/1-59745-003-0:307

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-395-4

  • Online ISBN: 978-1-59745-003-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics