Skip to main content

Sequence Search Methods and Scoring Functions for the Design of Protein Structures

  • Protocol
Protein Design

Part of the book series: Methods in Molecular Biology ((MIMB,volume 340))

  • 1483 Accesses

Abstract

This chapter focuses on the methods developed for the automatic or semiautomatic design of protein structures. We present several algorithms for the exploration of the sequence space and scoring of the designed models. There are now several successful designs that have been achieved using these approaches such as the stabilization of a protein fold, the stabilization of a protein–protein complex interface, and the optimization of a protein function. A rapid presentation of the methodologies is followed by a detailed analysis of two test case studies. The first one deals with the redesign of a protein hydrophobic core and the second one with the stabilization of a protein structure through mutations at the surface. The different approaches are compared and the consis-tency of the predictions with the experimental data are discussed. All the programs tested in these protocols are freely available through the internet and may be applied to a wide range of design issues.

The first two authors contributed equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Voigt, C. A., Gordon, D. B., and Mayo, S. L. (2000) Trading accuracy for speed: a quantitative comparison of search algorithms in protein sequence design. J. Mol. Biol. 299, 789–803.

    Article  PubMed  CAS  Google Scholar 

  2. Dantas, G., Kuhlman, B., Callender, D., Wong, M., and Baker, D. (2003) A large scale test of computational protein design: folding and stability of nine completely redesigned globular proteins. J. Mol. Biol. 332, 449–460.

    Article  PubMed  CAS  Google Scholar 

  3. Kuhlman, B., Dantas, G., Ireton, G. C., Varani, G., Stoddard, B. L., and Baker, D. (2003) Design of a novel globular protein fold with atomic-level accuracy. Science 302, 1364–1368.

    Article  PubMed  CAS  Google Scholar 

  4. Pokala, N. and Handel, T. M. (2005) Energy functions for protein design: adjust-ment with protein-protein complex affinities, models for the unfolded state, and negative design of solubility and specificity. J. Mol. Biol. 347, 203–227.

    Article  PubMed  CAS  Google Scholar 

  5. Filikov, A. V., Hayes, R. J., Luo, P., Stark, D. M., Chan, C., Kundu, A., and Dahiyat, B. I. (2002) Computational stabilization of human growth hormone. Protein Sci. 11,1452–1461.

    Article  PubMed  CAS  Google Scholar 

  6. Korkegian, A., Black, M. E., Baker, D., and Stoddard, B. L. (2005) Computa-tional thermostabilization of an enzyme. Science 308, 857–860.

    Article  PubMed  CAS  Google Scholar 

  7. Ventura, S., Vega, M. C., Lacroix, E., Angrand, I., Spagnolo, L., and Serrano, L. (2002) Conformational strain in the hydrophobic core and its implications for protein folding and design. Nat. Struct. Biol. 9, 485–493.

    Article  PubMed  CAS  Google Scholar 

  8. Dahiyat, B. I. and Mayo, S. L. (1997) De novo protein design: fully automated sequence selection. Science 278, 82–87.

    Article  PubMed  CAS  Google Scholar 

  9. Offredi, F., Dubail, F., Kischel, P., Sarinski, K., Stern, A. S., Van de Weerdt, C., et al. (2003) De novo backbone and sequence design of an idealized alpha/beta-barrel protein: evidence of stable tertiary structure. J. Mol. Biol. 325, 163–174.

    Article  PubMed  CAS  Google Scholar 

  10. Nauli, S., Kuhlman, B., and Baker, D. (2001) Computer-based redesign of a pro-tein folding pathway. Nat. Struct. Biol. 8, 602–605.

    Article  PubMed  CAS  Google Scholar 

  11. Harbury, P. B., Plecs, J. J., Tidor, B., Alber, T., and Kim, P. S. (1998) Highresolution protein design with backbone freedom. Science. 282, 1462–1467.

    Article  PubMed  CAS  Google Scholar 

  12. Su, A. and Mayo, S. L. (1997) Coupling backbone flexibility and amino acid sequence selection in protein design. Protein Sci. 6, 1701–1707.

    Article  PubMed  CAS  Google Scholar 

  13. Shifman, J. M. and Mayo, S. L. (2002) Modulating calmodulin binding specific-ity through computational protein design. J. Mol. Biol. 323, 417–423.

    Article  PubMed  CAS  Google Scholar 

  14. Reina, J., Lacroix, E., Hobson, S. D., Fernandez-Ballester, G., Rybin, V., Schwab, M. S., et al. (2002) Computer-aided design of a PDZ domain to recognize new target sequences. Nat. Struct. Biol. 9, 621–627.

    PubMed  CAS  Google Scholar 

  15. Kortemme, T., Joachimiak, L. A., Bullock, A. N., Schuler, A. D., Stoddard, B. L., and Baker, D. (2004) Computational redesign of protein-protein interaction specificity. Nat. Struct. Mol. Biol. 11,371–379.

    Article  PubMed  CAS  Google Scholar 

  16. Havranek, J. J. and Harbury, P. B. (2003) Automated design of specificity in molecu-lar recognition. Nat. Struct. Biol. 10,45–52.

    Article  PubMed  CAS  Google Scholar 

  17. Zhou, H. and Zhou, Y. (2002) Distance-scaled, finite ideal-gas reference state improves structure-derived potentials of mean force for structure selection and stability prediction. Protein Sci. 11,2714–2726.

    Article  PubMed  CAS  Google Scholar 

  18. Gilis, D. and Rooman, M. (2000) PoPMuSiC, an algorithm for predicting protein mutant stability changes: application to prion proteins. Protein Eng. 13,849–856.

    Article  PubMed  CAS  Google Scholar 

  19. Gilis, D., McLennan, H. R., Dehouck, Y., Cabrita, L. D., Rooman, M., and Bottomley, S. P. (2003) In vitro and in silico design of alpha1-antitrypsin mutants with different conformational stabilities. J. Mol. Biol. 325, 581–589.

    Article  PubMed  CAS  Google Scholar 

  20. Capriotti, E., Fariselli, P., and Casadio, R. (2004) A neural-network-based method for predicting protein stability changes upon single point mutations. Bioinformatics 20(Suppl 1),163–168.

    Google Scholar 

  21. Capriotti, E., Fariselli, P., and Casadio, R. (2005) I-Mutant2.0: predicting stabil-ity changes upon mutation from the protein sequence or structure. Nucleic Acids Res. 33,W306–W310.

    Article  PubMed  CAS  Google Scholar 

  22. Gromiha, M. M., Uedaira, H., An, J., Selvaraj, S., Prabakaran, P., and Sarai A. (2002) ProTherm, thermodynamic database for proteins and mutants: develop-ments in version 3.0. Nucleic Acids Res. 30,301–302.

    Article  PubMed  CAS  Google Scholar 

  23. Xiang, Z. and Honig, B. (2001) Extending the accuracy limits of prediction for side-chain conformations. J. Mol. Biol. 311, 421–430.

    Article  PubMed  CAS  Google Scholar 

  24. Guerois, R., Nielsen, J. E., and Serrano, L. (2002) Predicting changes in the sta-bility of proteins and protein complexes: a study of more than 1000 mutations. J. Mol. Biol. 320, 369–387.

    Article  PubMed  CAS  Google Scholar 

  25. Schymkowitz, J., Borg, J., Stricher, F., Nys, R., Rousseau, F., and Serrano, L. (2005) The FoldX web server: an online force field. Nucleic Acids Res. 33,W382–W388.

    Article  PubMed  CAS  Google Scholar 

  26. Dahiyat, B. I. and Mayo, S. L. (1997) Probing the role of packing specificity in protein design. Proc. Natl. Acad. Sci. USA 94, 10172–10177.

    Article  PubMed  CAS  Google Scholar 

  27. Perl, D., Mueller, U., Heinemann, U., and Schmid, F. X. (2000) Two exposed amino acid residues confer thermostability on a cold shock protein. Nat. Struct. Biol. 7, 380–383.

    Article  PubMed  CAS  Google Scholar 

  28. Wunderlich, M., Martin, A., and Schmid, F. X. (2005) Stabilization of the cold shock protein CspB from Bacillus subtilis by evolutionary optimization of Cou-lombic interactions. J. Mol. Biol. 347, 1063–1076.

    Article  PubMed  CAS  Google Scholar 

  29. Guex, N. and Peitsch, M. C. (1997) SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis 18,2714–2723.

    Article  PubMed  CAS  Google Scholar 

  30. Vriend, G. (1990) WHAT IF: a molecular modeling and drug design program. J. Mol. Graph. 8, 52–56.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc.

About this protocol

Cite this protocol

Madaoui, H., Becker, E., Guerois, R. (2006). Sequence Search Methods and Scoring Functions for the Design of Protein Structures. In: Guerois, R., de la Paz, M.L. (eds) Protein Design. Methods in Molecular Biology, vol 340. Humana Press. https://doi.org/10.1385/1-59745-116-9:183

Download citation

  • DOI: https://doi.org/10.1385/1-59745-116-9:183

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-585-9

  • Online ISBN: 978-1-59745-116-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics