Skip to main content

Prokaryotes and Their Habitats

  • Reference work entry
The Prokaryotes

Prokaryotes are well recognized as essential members of the biosphere. They inhabit all possible locations in which life exists from those offering ideal conditions for growth and reproduction to those representing extreme environments at the borderline of abiotic conditions.

The ubiquity of microorganisms is based on three major properties: their small size for easy dispersal by air and water, their metabolic versatility and flexibility, and their ability to tolerate unfavorable conditions. A predominant population is commonly composed of species able to grow under the particular conditions of a habitat. Many other species may also be present but in low numbers of individuals. As a rule, ecosystems of indistinct physicochemical and nutritional characteristics, such as many soils or sea water, which neither suppress nor specifically support microbial growth, usually carry low numbers of microorganisms but a high diversity of species. In contrast, ecosystems of strong environmental characteristics, such as acid mine waters, salt brines, and hot springs, commonly contain high cell numbers of very few species.

Experimental enrichment procedures bring about the predominance of certain species by controlling the supply of specific nutrients or the use of certain physicochemical conditions. If the growth conditions of a particular microorganism are known and reproducible, enrichment and isolation usually pose no problem. But if the particular requirements for growth of an organism are unknown, isolation procedures may be difficult to discover (Pfennig, 1961; Schlegel and Pfennig, 1961). For that reason, a number of organisms long known from microscopical observations, such a Thiovulum or Achromatium, have not yet been isolated in pure culture. Furthermore, organisms that have hitherto unknown growth characteristics and that are too small and inconspicuous for easy microscopical recognition have often escaped detection. An excellent example is Desulfuromonas acetoxidans (Pfennig and Biebl, 1976).

In characterizing an ecosystem microbiologically, it is important to distinguish between 1) organisms introduced incidentally by air, soil runoff, etc., physiologically just making the best of it, and 2) organisms typically adapted to the particular habitat and not occurring in any other except in the form of survival stages. An example of the former is Escherichia coli, as frequently found in polluted waters. An example of the latter is the above-mentioned Thiovulum sp., whose need for dissolved oxygen and hydrogen sulfide at the same time requires a high motility combined with chemotactic orientation in an aquatic oxic/anoxic interface.

Although their morphological differentiation is limited, prokaryotes have evolved a number of structural and chemical mechanisms that enable them to inhabit various extreme environments. The presence of a specified pigment, for instance, protects a cell against detrimental radiation or may provide for the absorption of light energy at specific wavelengths encountered in deeper water. Some filamentous cyanobacteria show a certain degree of cell differentiation, a feature that permits the fixation of elemental nitrogen concomitantly with oxygenic photosynthesis in oligotrophic environments. More importantly, however, the metabolic versatility of the prokaryotes, which reflects the development of metabolism during the evolution of life, enables them to live in many parts of the biosphere, including several where eukaryotes are not able to exist.

The vegetative microbial cell, with its relatively large reactive surface, responds quickly to changing physicochemical conditions of its immediate surrounding. As a consequence, the effective habitat of a microorganism is its microhabitat, the immediate surrounding of the cell in a compatible scale of space and time as determined by the radius of its metabolic action and interaction.

Naming microorganisms for their occurrence in certain characteristic macrohabitats, for example, soil and water bacteria, is of limited use. The two apparently very different habitats, soil and water, can be characterized as representing different proportions of the two phases, solid surface and water. The continuum of habitats ranges from highly arid desert soil with no or firmly bound pore water to offshore pelagic sea water containing a minimum of suspended particulate matter. Within the range of suitable physicochemical conditions, the abundance of microorganisms in an ecosystem is determined by the availability of the required energy and carbon sources and essential nutrients. All the more or less specific environments—e.g., the surface of leaves or skin, intestinal tracts, and symbiotically or parasitically invaded tissues—conform to this general description.

The concept of microenvironments eliminates the sharp dividing lines between aquatic, terrestrial, and even medical microbiology. Indeed, in ecological research the distinction between these academic disciplines is now more and more deemphasized by encompassing them under the label of environmental or biogeochemical microbiology. This chapter does not try to cover all the habitats of all organisms treated in this Handbook; the individual habitats and their characteristics are considered chapter by chapter for single species or physiological groups of prokaryotes. This chapter reviews the versatility of prokaryotic metabolism in relation to a few principles that determine the distribution of prokaryotes in nature.

The principal methods for the enrichment and isolation of the major metabolic types of microorganisms were discovered within a relatively short time. Details of the techniques developed by Winogradsky and Beijerinck are dispersed through the journals. Their collected papers (Beijerinck, 1921–1940; Winogradsky, 1949) are treasure troves for microbiologists; only one contemporary compilation exists (Stockhausen, 1907). Since the enrichment principles and methods were the subject of a symposium (Schlegel, 1965), several reviews have appeared (Aaronson, 1970; Schlegel and Jannasch, 1967; Veldkamp, 1970).

The aim of this Handbook is to encourage biologists to continue and intensify the search for bacteria in their natural environments, define habitats and ecological niches, and understand the flux of matter and energy through the biosphere. One may remember that in many soil and water samples there are more kinds of bacteria present than we can cultivate. Furthermore, much data on the flux of carbon and of trace gases through ecosystems cannot yet be accounted for by the bacteria cultivated so far. The gaps need to be filled by laboratory and field studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 700.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literature Cited

  • Aaronson, S. 1970 Experimental microbial ecology New York Academic Press

    Google Scholar 

  • Acher, A. J., Juven, B. J. 1977 Destruction of coliforms in water and sewage by dye-sensitized photooxidation Applied and Environmental Microbiology 33 1019–1022

    PubMed  CAS  Google Scholar 

  • Adler, J. 1974 Chemoreception and chemotaxis in bacteria 107–131 Jaenicke, L. (ed.) Biochemistry of sensory functions Berlin Springer-Verlag

    Chapter  Google Scholar 

  • Adler, J. 1988 Chemotaxis: Old and New Botanica Acta 101 93–100

    CAS  Google Scholar 

  • Ahrens, R., Moll, G., Rheinheimer, G. 1968 Die Rolle der Fimbrien bei der eigenartigen Sternbildung von Agrobacterium luteum Archiv für Mikrobiologie 63 321–330

    Article  PubMed  CAS  Google Scholar 

  • Akin, D. E. 1976 Ultrastructure of rumen bacterial attachment to forage cell walls Applied and Environmental Microbiology 31 562–568

    PubMed  CAS  Google Scholar 

  • Akin, D. E., Amos, W. E. 1975 Rumen bacterial degradation of forage cell walls investigated by electron microscopy Applied Microbiology 29 692–701

    PubMed  CAS  Google Scholar 

  • Alexander, M. 1971 Microbial ecology New York John Wiley & Sons

    Google Scholar 

  • Alexander, M. 1976 Natural selection and the ecology of microbial adaption in a biosphere 3–25 Heinrich, M. R. (ed.) Extreme environments Mechanisms of microbial adaption. New York Academic Press

    Google Scholar 

  • Alexander, M. 1977 Introduction to soil microbiology, 2nd ed New York John Wiley & Sons

    Google Scholar 

  • Anwar, M., Khan, T. H., Prebble, J., Zagalski, P. F. 1977 Membrane-bound carotenoid in Micrococcus luteus protects naphthoquinone from photodynamic action Nature 270 538–540

    Article  PubMed  CAS  Google Scholar 

  • Aragno, M. 1978 Enrichment, isolation and preliminary characterization of a thermophilic, endospore-forming hydrogen bacterium FEMS Microbiology Letters 3 13–15

    Article  CAS  Google Scholar 

  • Atlas, R. M., Bartha, R. 1987 Microbial ecology: Fundamentals and applications, 2nd ed Menlo-Park, CA The Benjamin/Cummings Publishing Company, Inc

    Google Scholar 

  • Babenzien, H.-D. 1965 Über Vorkommen und Kultur von Nevskia ramosa Zentralblatt für Bakteriologie, Parasitenkunde, Infektionskrankheiten und Hygiene, Abt. 1, Suppl. 1 111–116

    Google Scholar 

  • Babenzien, H.-D. 1967 Zur Biologie von Nevskia ramosa Zeitschrift für Allgemeine Mikrobiologie 7 89–96

    Article  PubMed  CAS  Google Scholar 

  • Ballard, R. D. 1977 Notes on a major oceanographic find Oceanus 20 35–44

    Google Scholar 

  • Barber, R. T. 1968 Dissolved organic carbon from deep waters resists microbial oxidation Nature 220 274–275

    Article  PubMed  CAS  Google Scholar 

  • Baross, J. A., Deming, J. W. 1983 Growth of black smoker bacteria at temperatures of at least 250°C Nature 303 423–426

    Article  CAS  Google Scholar 

  • Baross, J. A., Morita, R. Y. 1978 Microbial life at low temperatures: Ecological aspects 9–71 Kushner, D. J. (ed.) Microbial life in extreme environments London Academic Press

    Google Scholar 

  • Bartha, R., Atlas, R. M. 1977 The microbiology of aquatic oil spills Advances in Applied Microbiology 22 225–266

    Article  PubMed  CAS  Google Scholar 

  • Bartnicki-Garcia, S., Nickerson, W. J. 1962 Nutrition, growth and morphogenesis of Mucor rouxii Journal of Bacteriology 84 841–858

    PubMed  CAS  Google Scholar 

  • Bauchop, T. 1971 Mechanism of hydrogen formation in Trichomonas foetus Journal of General Microbiology 68 27–33

    Article  PubMed  CAS  Google Scholar 

  • Bauchop, T. 1977 Foregut fermentation 223–310 Clarke, R. T. J., Bauchop, T. (ed.) Microbial ecology of the gut London Academic Press

    Google Scholar 

  • Bauld, J., Brock, T. D. 1973 Ecological studies of Chloroflexus, a gliding photosynthetic bacterium Archiv für Mikrobiologie 92 267–284

    Article  Google Scholar 

  • Baumann, L., Baumann, P., Mandel, M., Allen, R. D. 1972 Taxonomy of aerobic marine bacteria Journal of Bacteriology 110 402–429

    PubMed  CAS  Google Scholar 

  • Baumann, P., Baumann, L. 1977 Biology of the marine enterobacteria: Genera Beneckea and Photobacterium Annual Review of Microbiology 31 39–61

    Article  PubMed  CAS  Google Scholar 

  • Bavendamm, W. 1924 Die farblosen und roten Schwefelbakterien des Süss-und Salzwassers Pflanzenforschung 2 1–156

    Google Scholar 

  • Bayley, S. T., Morton, R. A. 1978 Recent developments in the molecular biology of extremely halophilic bacteria CRC Critical Reviews in Microbiology 6 151–205

    Article  PubMed  CAS  Google Scholar 

  • Bayley, S. T., Morton R. A. 1979 Biochemical evolution of halobacteria 109–124 Shilo, M. (ed.) Strategies of microbial life in extreme environments Weinheim Verlag Chemie

    Google Scholar 

  • Bazylinski, D. A., Frankel, R. B., Jannasch, H. W. 1988 Anaerobic magnetite production by a marine, magnetotactic bacterium Nature 334 518–519

    Article  Google Scholar 

  • Beijerinck, M. W. 1895 Über Spirillum desulfuricans als Ursache von Sulfatreduktion Zentralblatt für Bakteriologie, Parasitenkunde Infektionskrankheiten und Hygiene, Abt. 2 1 1–9

    Google Scholar 

  • Beijerinck, M. W. 1921–1940 Verzammelde Geschriften Nijhoff, Den Haag 1–6

    Google Scholar 

  • Belkin, S., Wirsen, C. O., Jannasch, H. W. 1986 A new sulfur-reducing, extremely thermophilic eubacterium from a submarine thermal vent Appl. Environ. Microbiol. 51 1180–1185

    PubMed  CAS  Google Scholar 

  • Belkin, S., Nelson, D. C., Jannasch, H. W. 1986 Symbiotic assimilation of CO2 in two hydrothermal vent animals, the mussel Bathymodiolus thermophilus and the tube worm Riftia pachyptila Biol. Bull. 170 110–121

    Article  Google Scholar 

  • Benemann, J. R. 1973 Nitrogen fixation in termites Science 181 164–165

    Article  PubMed  CAS  Google Scholar 

  • Bennett, A. F. 1978 Activity metabolism of the lower vertebrates Annual Review of Physiology 40 447–469

    Article  PubMed  CAS  Google Scholar 

  • Berg, B., van Hofsten, B., Pettersson, G. 1972 Electron microscopic observations on the degradation of cellulose fibers by Cellvibrio fulvus and Sporocytophaga myxococcoides Journal of Applied Bacteriology 35 215–219

    Article  PubMed  CAS  Google Scholar 

  • Bergensen, F. J., Hipsley, E. H. 1970 The presence of N2-fixing bacteria in the intestine of man and animals Journal of General Microbiology 60 61–65

    Article  Google Scholar 

  • Berkeley, R. C. W., Lynch, J. M., Melling, J., Rutter, P. R., Vincent, B. 1980 Microbial adhesion to surfaces Ellis Horwood Chichester, UK

    Google Scholar 

  • Berndt, H., Ostwal, K.-P., Lalucat, J., Schumann, Ch., Mayer, F., Schlegel, H. G. 1976 Identification and physiological characterization of the nitrogen fixing bacterium Corynebacterium autotrophicum GZ 29 Archives of Microbiology 108 17–26

    Article  PubMed  CAS  Google Scholar 

  • Bezdek, H. G., Carlucci, A. F. 1972 Surface concentration of marine bacteria Limnology and Oceanography 17 566–569

    Article  Google Scholar 

  • Bhuiya, Z. H., Walker, N. 1977 Autotrophic nitrifying bacteria in acid tea soils from Bangladesh and Sri Lanka Journal of Applied Bacteriology 42 253–257

    Article  PubMed  CAS  Google Scholar 

  • Biebl, H., Pfennig, N. 1978 Growth yield of green sulfur bacteria in mixed cultures with sulfur and sulfate reducing bacteria Archives of Microbiology 117 9–16

    Article  CAS  Google Scholar 

  • Bitton, G., Marshall, K. C. 1980 Adsorption of microorganisms to surfaces New York John Wiley

    Google Scholar 

  • Blakemore, R. P. 1975 Magnetotactic bacteria Science 190 377–379

    Article  PubMed  CAS  Google Scholar 

  • Blakemore, R. P., Frankel, R. B., Kalmijn, A. J. 1980 South-seeking magnetotactic bacteria in the Southern Hemisphere Nature 286 384–385

    Article  Google Scholar 

  • Blakemore, R. P., Maratea, D., Wolfe, R. S. 1979 Isolation and pure culture of a freshwater magnetic spirillum in chemically defined medium Journal of Bacteriology 140 720–729

    PubMed  CAS  Google Scholar 

  • Bland, J. A., Staley, J. T. 1978 Observations on the biology of Thiothrix Archives of Microbiology 117 79–87

    Article  Google Scholar 

  • Blumershine, R. V., Savage, D. C. 1978 Filamentous microbes indigenous to the murine small bowel: A scanning electron microscopic study of their morphology and attachment to the epithelium Microbial Ecology 4 95–103

    Article  Google Scholar 

  • Bokor, R. 1933 Die Mikrobiologie der Szik-(Salz-oder Alkali-) Böden mit besonderer Berücksichtigung ihrer Fruchtbarmachung 221–258 Fehäer, D. (ed.) Untersuchungen über die Mikrobiologie des Waldbodens Berlin Springer-Verlag

    Chapter  Google Scholar 

  • Bothe, H., De Bruijn, F. J., Newton, W. E. (ed.). 1988 Nitrogen fixation: Hundred years after Gustav-Fischer-Verlag Stuttgart, Germany

    Google Scholar 

  • Bousfield, I. J., MacKenzie, A. R. 1976 Inactivation of bacteria by freeze-drying Society for Applied Bacteriology Symposium Series 5 329–344

    CAS  Google Scholar 

  • Boyd, S. A., Shelton, D. R., Berry, D., Tiedje, J. M. 1983 Anaerobic biodegradation of phenolic compounds in digested sludge Applied and Environmental Microbiology 46 50–54

    PubMed  CAS  Google Scholar 

  • Boyer, E. V., Ingle, M. B., Merver, G. D. 1973 Bacillus alcalophilus subsp. halodurans subsp. nov.: An alkaline-amylase-producing, alkalophilic organism International Journal of Systematic Bacteriology 23 238–242

    Article  Google Scholar 

  • Boylen, C. W. 1973 Survival of Arthrobacter crystallopoietes during prolonged periods of extreme desiccation Journal of Bacteriology 113 33–37

    PubMed  CAS  Google Scholar 

  • Breznak, J. A., Brill, W. J., Mertins, J. W., Coppel, H. C. 1973 Nitrogen fixation in termites Nature 244 577–579

    Article  PubMed  CAS  Google Scholar 

  • Brierley, C. L. 1977 Thermophilic microorganisms in extraction of metals from ores 273–284 Underkofler L. A. (ed.) Developments in industrial microbiology Proceedings of the 33rd General Meeting of the Society for Industrial Microbiology, vol 18. Washington American Institute of Biological Sciences

    Google Scholar 

  • Brierley, C. L. 1978 Bacterial leaching CRC Critical Reviews in Microbiology 6 207–262

    Article  PubMed  CAS  Google Scholar 

  • Brierley, C. L., Brierley, J. A. 1973 A chemoautotrophic and thermophilic microorganism isolated from an acid hot spring Canadian Journal of Microbiology 19 183–188

    Article  PubMed  CAS  Google Scholar 

  • Brierley, J. A. 1978 Thermophilic iron-oxidizing bacteria found in copper leaching dumps Applied and Environmental Microbiology 36 523–525

    PubMed  CAS  Google Scholar 

  • Brierley, J. A., Lockwood, S. J. 1977 The occurrence of thermophilic iron-oxidizing bacteria in a copper leaching system FEMS Microbiology Letters 2 163–165

    Article  CAS  Google Scholar 

  • Briston, J., Courtois, D., Denis, F. 1974 Microbiological study of a hypersaline lake in French Somaliland Applied Microbiology 27 819–822

    Google Scholar 

  • Brock, T. D. 1967 Life at high temperatures Science 158 1012–1019

    Article  PubMed  CAS  Google Scholar 

  • Brock, T. D. 1969 Microbial growth under extreme conditions Society for General Microbiology Symposium. 19 15–41

    Google Scholar 

  • Brock, T. D. 1970 High temperature systems Annual Review of Ecology and Systematics 1 191–220

    Article  Google Scholar 

  • Brock, T. D. 1978 Thermophilic microorganisms and life at high temperatures New York Springer-Verlag

    Google Scholar 

  • Brock, T. D. 1979 Ecology of saline lakes 29–47 Shilo, M. (ed.) Strategies of microbial life in extreme environments Weinheim Verlag Chemie

    Google Scholar 

  • Brock, T. D. (ed.). 1986 Thermophiles: General, molecular and applied microbiology J. Wiley & Sons, Inc. New York

    Google Scholar 

  • Brock, T. D. 1987 The study of microorganisms in situ: Progress and problems 1–17 Fletscher, M., Gray, T. R. G., Jones, J. G. (ed.) Ecology of microbial communities Cambridge Cambridge University Press

    Google Scholar 

  • Brock, T. D., Boylen, K. L. 1973 Presence of thermophilic bacteria in laundry and domestic hot-water heaters Applied Microbiology 25 72–76

    PubMed  CAS  Google Scholar 

  • Brock, T. D., Freeze, H. 1969 Thermus aquaticus gen. n. and sp. n., a non-sporulating extreme thermophile Journal of Bacteriology 98 289–297

    PubMed  CAS  Google Scholar 

  • Brock, T. D., Brock, M. L., Bott, T. L., Edwards, M. R. 1971 Microbial life at 90°C: The sulfur bacteria of Boulder Spring Journal of Bacteriology 107 303–314

    PubMed  CAS  Google Scholar 

  • Brock, T. D., Brock, K. M., Belly, R. T., Weiss, R. L. 1972 Sulfolobus: A new genus of sulfur-oxidizing bacteria living at low pH and high temperature Archiv für Mikrobiologie 84 54–68

    Article  PubMed  CAS  Google Scholar 

  • Brown, A. D. 1978 Microbial water stress Bacteriological Reviews 40 803–846

    Google Scholar 

  • Bryant, M. P., Wolin, E. A., Wolin, M. J., Wolfe, R. S. 1967 Methanobacillus omelianskii, a symbiotic association of two species of bacteria Archiv für Mikrobiologie 59 20–31

    Article  PubMed  CAS  Google Scholar 

  • Bryant, M. P., Campbell, L. L., Reddy, C. A., Crabill, M. R. 1977 Growth of Desulfovibrio in lactate or ethanol media low in sulfate in association with H2-utilizing methanogenic bacteria Applied and Environmental Microbiology 33 1162–1169

    PubMed  CAS  Google Scholar 

  • Buchner, P. 1953 Endosymbiose der Tiere mit pflanzlichen Mikroorganismen Basel Birkhäuser Verlag

    Google Scholar 

  • Buder, J. 1919 Zur Biologie des Bacteriopurpurins und der Purpurbakterien Jahrbücher der Wissenschaftlichen Botanik 58 525–628

    CAS  Google Scholar 

  • Burggraf, S., Jannasch, H. W., Nicolaus, B., Stetter, K. O. 1990 Archaeoglobus profundus sp. nov., represents a new species of within the sulfate-reducing archaebacteria Syst. Appl. Microbiol. 10 24–28

    Article  Google Scholar 

  • Butlin, K. R., Postgate, J. R. 1954 The microbiological formation of sulphur in Cyrenaican lakes 112–122 Cloudsley-Thompson, J. L. (ed.) Biology of deserts London Institute of Biology

    Google Scholar 

  • Cagle, G. D. 1975 Fine structure and distribution of extracellular polymer surrounding selected aerobic bacteria Canadian Journal of Microbiology 21 395–408

    Article  PubMed  CAS  Google Scholar 

  • Cappenberg, Th. E. 1974a Interrelations between sulfate-reducing and methane-producing bacteria in bottom deposits of a fresh-water lake. I. Field of observations Antonie van Leeuwenhoek Journal of Microbiology and Serology 40 285–295

    Article  CAS  Google Scholar 

  • Cappenberg, Th. E. 1974b Interrelations between sulfate-reducing and methane-producing bacteria in bottom deposits of a fresh-water lake. II. Inhibition experiments Antonie van Leeuwenhoek Journal of Microbiology and Serology 40 297–306

    Article  CAS  Google Scholar 

  • Castenholz, R. W. 1969 Thermophilic blue-green algae and the thermal environment Bacteriological Reviews 33 476–504

    PubMed  CAS  Google Scholar 

  • Castenholz, R. W. 1976 The effect of sulfide on the blue-green algae of hot springs. I. New Zealand and Iceland Journal of Phycology 12 54–68

    CAS  Google Scholar 

  • Castenholz, R. W. 1977 The effect of sulfide on the blue-green algae of hot springs. II. Yellowstone National Park Microbial Ecology 3 79–105

    Article  CAS  Google Scholar 

  • Castenholz, R. W. 1979 Evolution and ecology of thermophilic microorganisms 373–392 Shilo, M. (ed.) Strategies of microbial life in extreme environments Weinheim Verlag Chemie

    Google Scholar 

  • Cavanaugh, C. M., Gardiner, S. L., Jones, M. L. S., Jannasch, H. W., Waterbury, J. B. 1981 Prokaryotic cells in the hydrothermal vent tube worm, Riftia pachyptila: Possible chemoautotrophic symbionts Science 213 340–342

    Article  PubMed  CAS  Google Scholar 

  • Characklis, W. G., Marshall, K. C. 1990 Biofilms Wiley Interscience New York

    Google Scholar 

  • Chen, M., Wolin, M. J. 1977 Influence of CH4 production by Methanobacterium ruminantium on the fermentation of glucose and lactate by Selenomonas ruminantium Applied and Environmental Microbiology 34 756–759

    PubMed  CAS  Google Scholar 

  • Chet, I., Mitchell, R. 1976 Ecological aspects of microbial chemotactic behavior Annual Review of Microbiology 30 221–239

    Article  PubMed  CAS  Google Scholar 

  • Childress, J. J., Fisher, C. R., Brook, J. M., Kennicutt, M. C., II., Bridigare, R., Anderson, A. E. 1986 A methanotrophic marine molluscan (Bivalvia, Mytilidae) symbiosis: Mussels fueled by gas Science 233 1306–1308

    Article  PubMed  CAS  Google Scholar 

  • Chislett, M. E., Kushner, D. J. 1961 A strain of Bacillus circulans capable of growing under highly alkaline conditions Journal of General Microbiology 24 187–190

    Article  PubMed  CAS  Google Scholar 

  • Clark, A. E., Walsby, A. E. 1978a The occurrence of gas-vacuolate bacteria in lakes Archives of Microbiology 118 223–228

    Article  Google Scholar 

  • Clark, A. E., Walsby, A. E. 1978a The development and vertical distribution of populations of gas-vacuolate bacteria in a eutrophic, monomictic lake Archives of Microbiology 118 229–233

    Article  Google Scholar 

  • Clark, F. E. 1967 Bacteria in soil 15–49 Burges, A., Raw, F. (ed.) Soil biology London Academic Press

    Google Scholar 

  • Clarke, R. T. J. 1977 The gut and its micro-organisms 35–71 Clarke, R. T. J., Bauchop, T. (ed.) Microbial ecology of the gut London Academic Press

    Google Scholar 

  • Coates, M. E., Fuller, R. 1977 The gnotobiotic animal in the study of gut microbiology 311–346 Clark, R. T. J., Bauchop, T. (ed.) Microbial ecology of the gut London Academic Press

    Google Scholar 

  • Cohen, Y., Padan, E., Shilo, M. 1975 Facultative anoxygenic photosynthesis in the cyanobacterium Oscillatoria limnetica Journal of Bacteriology 123 855–861

    PubMed  CAS  Google Scholar 

  • Cohen, Y., Krumbein, W. E., Goldberg, M., Shilo, M. 1977 Solar lake (Sinai). I. Physical and chemical limnology Limnology and Oceanography 22 597–608

    Article  CAS  Google Scholar 

  • Cohen, Y., Rosenberg, E. 1989 Microbial Mats—Physiological ecology of benthic microbial communities American Society for Microbiology Washington, DC

    Google Scholar 

  • Cohen-Bazire, G., Stainer, R. Y. 1958 Inhibition of carotenoid synthesis in photosynthetic bacteria Nature 181 250–252

    Article  PubMed  CAS  Google Scholar 

  • Cohen-Bazire, G., Kunisawa, R., Pfennig, N. 1969 Comparative study of the structure of gas vacuoles Journal of Bacteriology 100 1049–1061

    PubMed  CAS  Google Scholar 

  • Cohn, F. 1881 Gutachten über die Abwässer verschiedener Zuckerfabriken im Winter 1881 Quoted from Kolkwitz, 1906

    Google Scholar 

  • Colmer, A. R., Temple, K. L., Hinkle, M. E. 1950 An iron-oxidizing bacterium from the drainage of some bituminous coal mines Journal of Bacteriology 59 317–328

    PubMed  CAS  Google Scholar 

  • Cornax, R., Morinigo, M. A., Romero, P., Borrego, J. J. 1990 Survival of pathogenic microorganisms in seawater Curr. Microbiology 220 293–298

    Article  Google Scholar 

  • Costerton, J. W., Cheng, K. J. 1981 The Bacterial glycocalyx in nature and disease Annual Review of Microbiology 35 299–324

    Article  PubMed  CAS  Google Scholar 

  • Costerton, J. W., Cheng, K.-J., Geesey, G. G., Ladd, T. I., Nickel, J. C., Dasgupta, M., Marrie, T. J. 1987 Bacterial biofilms in nature and disease Annual Review of Microbiology 41 435–464

    Article  PubMed  CAS  Google Scholar 

  • Costerton, J. W., Geesey, G. G., Cheng, K.-J. 1978 How bacteria stick Scientific American 238 86–95

    Article  PubMed  CAS  Google Scholar 

  • Costerton, J. W., Ingram, J. M., Cheng, K.-J. 1974 Structure and function of the cell envelope of Gram-negative bacteria Bacteriological Reviews 38 87–110

    PubMed  CAS  Google Scholar 

  • Costerton, J. W., Irvin, R. T., Cheng, K. J. 1981a The role of bacterial surface structures in pathogenesis Critical Reviews in Microbiology 8 303–338

    Article  PubMed  CAS  Google Scholar 

  • Costerton, J. W., Marrie, T. J., Cheng, K. J. 1985 Phenomena of bacterial adhesion 3–43 Savage, D. C., and Fletcher, M. (ed.) Bacterium adhesion Plenum Press New York

    Chapter  Google Scholar 

  • Cross, T. 1968 Thermophilic actinomycetes Journal of Applied Bacteriology 31 36–53

    Article  PubMed  CAS  Google Scholar 

  • Csonka, L. N. 1989 Physiological and genetic responses of bacteria to osmotic stress Microbiological Review 53 121–147

    CAS  Google Scholar 

  • Cundell, A. M., Sleeter, T. D., Mitchell, R. 1977 Microbial populations associated with the surface of the brown alga Ascophyllum nodosum Microbial Ecology 4 81–91

    Article  Google Scholar 

  • Dazzo, F. B., Yanke, W. E., Brill, W. J. 1978 Trifoliin: A Rhizobium recognition protein from white clover Biochimica et Biophysica Acta 539 276–286

    Article  PubMed  CAS  Google Scholar 

  • De Bont, J. A. M., Mulder, E. G. 1974 Nitrogen fixation and co-oxidization of ethylene by a methane-utilizing bacterium Journal of General Microbiology 83 113–121

    Article  Google Scholar 

  • Degens, E. T., Ross, D. A. 1974 The Black Sea: Geology, chemistry and biology Memoir 20. Tulsa American Association of Petroleum

    Google Scholar 

  • Dehority, B. A. 1971 Carbon dioxide requirement of various species of rumen bacteria Journal of Bacteriology 105 70–76

    PubMed  CAS  Google Scholar 

  • DeLong, E. F., Wickham, G. S., Pace, N. R. 1988 Phylogenetic stains: Ribosomal RNA-based probes for the identification of single cells Science 243 1360–1363

    Article  Google Scholar 

  • Deming, J. W., Colwell, R. R. 1982 Barophilic bacteria associated with digestive tracts of abyssal holothurians Appl. Environ. Microbiol. 44 1222–1230

    PubMed  CAS  Google Scholar 

  • Deming, J. W., Tabor, P. S., Colwell, R. R. 1981 Barophilic growth from intestinal tracts of deep-sea invertebrates Microb. Ecol. 7 85–94

    Article  Google Scholar 

  • Demoll, R., Liebmann, H. 1952 Über die Verteilung von Sphaerotilus natans im Fluss Schweizerische Zeitschrift für Hydrologie 14 289–297

    Google Scholar 

  • Dietz, A. S., Yayanos, A. A. 1978 Silica gel for isolating and studying bacteria under hydrostatic pressure Appl. Environ. Microbiol. 36 966–968

    PubMed  CAS  Google Scholar 

  • Distel, D. L., Lane, D. J., Olsen, G. J., Giovannoni, S. J., Pace, B., Pace, N. R., Stahl, D. A., Felbeck, H. 1988 Sulfur-oxidizing bacterial endosymbionts: analysis of phylogeny and specificity by 16S rRNA sequences J. Bacteriol. 170 2506–2510

    PubMed  CAS  Google Scholar 

  • Dondero, N. C. 1961 Sphaerotilus, its nature and economic significance Advances in Applied Microbiology 3 77–107

    Article  PubMed  CAS  Google Scholar 

  • Dondero, N. C. 1975 The Sphaerotilus-Leptothrix group Annual Review of Microbiology 29 407–465

    Article  PubMed  CAS  Google Scholar 

  • Drasar, B. S., Barrow, P. A. 1985 Intestinal microbiology (Aspects of Microbiology 10) England van Nostrand Reinholf

    Google Scholar 

  • Drasar, B. S., Hill, M. J. 1974 Human intestinal flora London Academic Press

    Google Scholar 

  • Duckworth, R. B. 1975 Water relations in foods Proceedings of an International Symposium in Glasgow, September 1974. London Academic Press

    Google Scholar 

  • Duda, V. I., Makaer’eva, D. E. 1977 Morphogenesis and function of gas caps on spores of anaerobic bacteria of the genus Clostridium. In Russian, with English summary Mikrobiologiya 46 689–694

    CAS  Google Scholar 

  • Dugan, P. R., MacMillan, C. B., Pfister, R. M. 1970 Aerobic heterotrophic bacteria indigenous to pH 2.8 acid mine water: Microscopic examination of acid streamers Journal of Bacteriology 101 973–981

    PubMed  CAS  Google Scholar 

  • Dundas, I. D., Larsen, H. 1962 The physiological role of the carotenoid pigments of Halobacterium salinarium Archiv für Mikrobiologie 44 233–239

    Article  CAS  Google Scholar 

  • Dundas, I. E. D. 1977 Physiology of Halobacteriaceae Advances in Microbial Physiology 15 85–120

    Article  PubMed  CAS  Google Scholar 

  • Ebisu, S., Kato, K., Kotani, S., Misaki, A. 1975 Structural differences in fructans elaborated by Streptococcus mutans and S. salivarius Journal of Biochemistry 78 879–887

    PubMed  CAS  Google Scholar 

  • Ellwood, D. C., Hedger, J. N., Latham, M. H., Lynch, J. M., Slater, J. H. 1980 Contemporary microbial ecology London Academic Press

    Google Scholar 

  • Ensign, J. C., Wolfe, R. S. 1964 Nutritional control of morphogenesis in Arthrobacter crystallopoietes Journal of Bacteriology 87 924–932

    PubMed  CAS  Google Scholar 

  • Eutick, M. L., O’Brien, R. W., Slaytor, M. 1978 Bacteria from the gut of Australian termites Applied and Environmental Microbiology 35 823–828

    PubMed  CAS  Google Scholar 

  • Fairbairn, D. 1970 Biochemical adaptation and loss of genetic capacity in helminth parasites Biological Reviews 45 29–72

    Article  PubMed  CAS  Google Scholar 

  • Felbeck, H., Childress, J. J., Somero, G. N. 1981 Calvin-Benson cycle and sulphide oxidation enzymes in animals from sulphide-rich habitats Nature 293 291–293

    Article  CAS  Google Scholar 

  • Fenchel, T. M. 1969 The ecology of marine microbenthos. IV. Structure and function of the benthic ecosystem Ophelia 6 1–182

    Article  Google Scholar 

  • Fenchel, T. M., Jørgensen, B. B. 1977 Detritus food chains in aquatic ecosystems: The role of bacteria Advances in Microbiol Ecology 1 1–58

    Article  CAS  Google Scholar 

  • Fenchel, T. M., Riedl, R. J. 1970 The sulfide system: A new biotic community underneath the oxidized layer of marine sand bottoms Marine Biology 7 255–268

    Article  CAS  Google Scholar 

  • Fenchel, T. M., Staarup, B. J. 1971 Vertical distribution of photosynthetic pigments and the penetration of light in marine sediments Oikos 22 172–182

    Article  CAS  Google Scholar 

  • Ferry, J. G., Wolfe, R. S. 1976 Anaerobic degradation of benzoate to methane by a microbial consortium Archives of Microbiology 107 33–40

    Article  PubMed  CAS  Google Scholar 

  • Fiala, G., Stetter, K. O., Jannasch, H. W., Langworthy, T. A., Madon, J. 1986 Staphylothermus marinus sp. nov. represents a novel genus of extremely thermophilic submarine heterotrophic archaebacteria growing up to 98°C System. Appl. Microbiol. 8 106–113

    Article  Google Scholar 

  • Fisher, C. R., Childress, J. J., Minnich, E. 1989 Autotrophic carbon fixation by the chemoautotrophic symbionts of Riftia pachyptila Biol. Bull. 177 372–385

    Article  CAS  Google Scholar 

  • Fletcher, M., Loeb, G. I. 1979 Influence of substratum characteristics on the attachment of a marine pseudomonad to solid surfaces Applied and Environmental Microbiology 37 67–72

    PubMed  CAS  Google Scholar 

  • Fletcher, M., Marshall, K. C. 1982 Are solid surfaces of ecological significance to aquatic bacteria? Marshall, K. C. (ed.) Advances in microbial ecology New York Plenum Press

    Google Scholar 

  • Fliermans, C. B., Brock, T. D. 1972 Ecology of sulfur-oxidizing bacteria in hot acid soils Journal of Bacteriology 111 343–350

    PubMed  CAS  Google Scholar 

  • Focht, D. D., Verstraete, W. 1977 Biochemical ecology of nitrification and denitrification Advances in Microbial Ecology 1 135–214

    Article  CAS  Google Scholar 

  • Foglesong, M. A., Walker, D. H., Jr., Puffer, J. S., Markovetz, A. J. 1975 Ultrastructural morphology of some prokaryotic microorganisms associated with the hindgut of cockroaches Journal of Bacteriology 123 336–345

    PubMed  CAS  Google Scholar 

  • Foster, J. W. 1949 Chemical activities of fungi New York Academic Press

    Google Scholar 

  • Frankel, R. B., Blakemore, R. P., Wolfe, R. S. 1979 Magnetite in freshwater magnetotactic bacteria Science 203 1355–1356

    Article  PubMed  CAS  Google Scholar 

  • Fridovich, I. 1974 Superoxide dismutases Advances in Enzymology 41 35–97

    CAS  Google Scholar 

  • Fridovich, I. 1975 Oxygen: Boon and bane American Scientist 63 54–59

    PubMed  CAS  Google Scholar 

  • Fridovich, I. 1976 Oxygen radicals, hydrogen peroxide, and oxygen toxicity 239–277 Pryor, W. A. (ed.) Free radicals in biology, vol. 1 New York Academic Press

    Chapter  Google Scholar 

  • Gerber, N. N. 1975 Prodigiosin-like pigments CRC Critical Reviews in Microbiology 3 469–485

    Article  PubMed  CAS  Google Scholar 

  • Germaine, G. R., Chludzinski, A. M., Schachtele, C. F. 1974 Streptococcus mutans dextransucrase: Requirement for primer dextran Journal of Bacteriology 120 287–294

    PubMed  CAS  Google Scholar 

  • Gillespy, T. G., Thorpe, R. H. 1968 Occurrence and significance of thermophiles in canned foods Journal of Applied Bacteriology 31 59–65

    Article  PubMed  CAS  Google Scholar 

  • Giovannoni, S. J., Britschgi, T. B., Moyer, C. L., Field, K. G. 1990 Genetic diversity in Sargasso Sea bacterioplankton Nature 345(6270) 60–63

    Article  Google Scholar 

  • Giovannoni, S. J., DeLong, E. F., Olsen, G. J., Pace, N. R. 1988 Phylogenetic group-specific oligodeoxynucleotide probes for identification of single microbial cells J. Bacteriol. 170 720–726

    PubMed  CAS  Google Scholar 

  • Golovacheva, R. S. 1976 Thermophilic nitrifying bacteria from hot springs. [In Russian, with English summary.]; Mikrobiologiya 45 377–379

    Google Scholar 

  • Golovacheva, R. S. 1979 Attachment of Sulfobacillus thermosulfidooxidans cells to the surface of sulfide minerals. [In Russian, with English summary.]; Mikrobiologiya 48 528–533

    CAS  Google Scholar 

  • Golovacheva, R. S., Karavaiko, G. I. 1978 Sulfobacillus, a new genus of thermophilic sporeforming bacteria. [In Russian, with English summary.]; Mikrobiologiya 47 815–822

    CAS  Google Scholar 

  • Gorini, L. 1960 Antagonism between substrate and repressor in controlling the formation of a biosynthetic enzyme Proceedings of the National Academy of Sciences of the United States of America 46 682–690

    Article  PubMed  CAS  Google Scholar 

  • Gorlenko, W. M., Dubinina, G. A., Kuznezow, S. J. 1977 Ecology of aquatic microorganisms. [In Russian.]; Moscow Nauka

    Google Scholar 

  • Goto, E., Kodama, T., Minoda, Y. 1977 Isolation and culture conditions of thermophilic hydrogen bacteria Agricultural and Biological Chemistry 41 685–690

    Article  CAS  Google Scholar 

  • Gottlieb, S. F. 1971 Effect of hyperbaric oxygen on microorganisms Annual Review of Microbiology 25 111–152

    Article  PubMed  CAS  Google Scholar 

  • Grant, W. D., Mills, A. A., Schofield, A. K. 1979 An alkalophilic species of Ectothiorhodospira from a Kenyan soda lake Journal of General Microbiology 110 137–142

    Article  Google Scholar 

  • Grassle, J. F. 1986 The ecology of deep-sea hydrothermal vent communities Adv. Mar. Biol. Ecol. 23 301–362

    Article  Google Scholar 

  • Greenberg, E. P., Hastings, J. W., Ulitzur, S. 1979 Induction of luciferase synthesis in Beneckea harveyi by other marine bacteria Archives of Microbiology 120 87–91

    Article  CAS  Google Scholar 

  • Griffin, D. M. 1981 Water and microbial stress Advances in Microbial Ecology 5 91–136

    Article  CAS  Google Scholar 

  • Griffin, D. M., Luard, E. J. 1979 Water stress and microbial ecology 49–63 Shilo, M. (ed.) Strategies of microbial life in extreme environments Weinheim Verlag Chemie

    Google Scholar 

  • Gromet-Elhanan, Z. 1977 Electron transport and photophosphorylation in photosynthetic bacteria 637–662 Trebst, A., and Avron, M. (ed.) Encyclopaedia of plant physiology, vol. 5 Berlin Springer-Verlag

    Google Scholar 

  • Gunner, H. B., Alexander, M. 1964 Anaerobic growth of Fusarium oxysporum Journal of Bacteriology 87 1309–1316

    PubMed  CAS  Google Scholar 

  • Hansen, M. H., Ingvorsen, K., Jørgensen, B. B. 1978 Mechanisms of hydrogen sulfide release from coastal marine sediments to the atmosphere Limnology and Oceanography 23 68–76

    Article  CAS  Google Scholar 

  • Harder, W., Veldkamp, H. 1968 Physiology of an obligate psychrophilic marine Pseudomonas species Journal of Applied Bacteriology 31 12–33

    Article  CAS  Google Scholar 

  • Harder, W., Veldkamp, H. 1971 Competition of marine psychrophilic bacteria at low temperatures Antonie van Leeuwenhoek Journal of Microbiology and Serology 37 51–63

    Article  CAS  Google Scholar 

  • Hardie, J. M., Bowden, G. H. 1974 The normal microbial flora of the mouth 47–83 Skinner, F. A., Carr, J. G. (ed.) The normal microbial flora of man London Academic Press

    Google Scholar 

  • Harold, R., Stanier, R. Y. 1955 The genera Leucothrix and Thiothrix Bacteriological Reviews 19 49–58

    PubMed  CAS  Google Scholar 

  • Harris, R. H., Mitchell, R. 1973 The role of polymers in microbial aggregation Annual Review of Microbiology 27 27–50

    Article  PubMed  CAS  Google Scholar 

  • Hassan, H. M., Fridovich, I. 1979 Superoxide dismutase and its role for survival in the presence of oxygen 179–193 Shilo, M. (ed.) Strategies of microbial life in extreme environments Weinheim Verlag Chemie

    Google Scholar 

  • Hastings, J. W., Nealson, K. H. 1977 Bacterial bioluminescence Annual Review of Microbiology 31 549–595

    Article  PubMed  CAS  Google Scholar 

  • Hattori, T., Ishida, Y., Maruyama, Y., Morita, R. Y., Uchida, A. 1989 Recent advances in microbial ecology Proceedings of the 5th International Symposium on Microbial Ecology, Jap. Sci. Soc. Press Tokyo

    Google Scholar 

  • Hazelbauer, G. L. 1988 The bacterial chemosensory system Canadian Journal of Microbiology 34 466–474

    Article  PubMed  CAS  Google Scholar 

  • Heinen, W. 1974 Proceedings of the first European workshop on microbial adaptation to extreme environments Biosystems 6 57–80

    Article  Google Scholar 

  • Held, A. A. 1970 Nutrition and fermentative energy metabolism of the water mold Aqualinderella fermentans Mycologia 62 339–358

    Article  CAS  Google Scholar 

  • Held, A. A., Emerson, R., Fuller, M. S., Gleason, F. H. 1969 Blastocladia and Aqualinderella: Fermentative water molds with high carbon dioxide optima Science 165 706–708

    Article  PubMed  CAS  Google Scholar 

  • Henrici, A. T., Johnson, D. E. 1935 Studies of freshwater bacteria. II. Stalked bacteria, a new order of Schizomycetes Journal of Bacteriology 30 61–86

    PubMed  CAS  Google Scholar 

  • Herdman, M., Janvier, M., Waterbury, J. B., Rippka, R., Stanier, R. Y. 1979 Deoxyribonucleic acid base composition of cyanobacteria Journal of General Microbiology 111 63–71

    Article  CAS  Google Scholar 

  • Heukelekian, H., Heller, A. 1940 Relation between food concentration and surface for bacterial growth Journal of Bacteriology 40 547–558

    PubMed  CAS  Google Scholar 

  • Heumann, W., Marx, R. 1964 Feinstruktur und Funktion der Fimbrien bei dem sternbildenden Bakterium Pseudomonas echinoides Archiv für Mikrobiologie 47 325–337

    Article  Google Scholar 

  • Hirsch, P. 1974 Budding bacteria Annual Review of Microbiology 28 392–444

    Article  Google Scholar 

  • Hirsch, P. 1979 Life under conditions of low nutrient concentrations 357–372 Shilo, M. (ed.) Strategies of microbial life in extreme environments Weinheim Verlag Chemie

    Google Scholar 

  • Hirsch, P., Pankratz, St. H. 1970 Study of bacterial populations in natural environments by use of submerged electron microscope grids Zeitschrift für Allgemeine Mikrobiologie 10 589–605

    Article  PubMed  CAS  Google Scholar 

  • Hobson, P. N. 1988 The rumen microbial ecosystem Elsevier Science Publishers ondon

    Google Scholar 

  • Hochachka, P. W., Mustafa, T. 1972 Invertebrate facultative anaerobiosis Science 178 1056–1060

    Article  PubMed  CAS  Google Scholar 

  • Hochachka, P. W., Somero, G. N. 1973 Strategies of biochemical adaptation London W.B. Saunders

    Google Scholar 

  • Hoffmann, C. 1942 Beiträge zur Vegetation des FarbstreifenSandwattes Kieler Meeresforschungen 4 85–108

    Google Scholar 

  • Holben, W. E., Jansson, J., Chelm, B., Tiedje, T. 1988 DNA probe method for detection of specific microorganisms in the soil bacterial community Appl. Environ. Microbiol. 54 703–711

    PubMed  CAS  Google Scholar 

  • Holdemann, L. V., Cato, E. P., Moore, W. E. C. 1977 Anaerobe laboratory manual, 4th ed Blacksburg Virginia Polytechnic Institute and State University

    Google Scholar 

  • Horikoshi, K., Akiba, T. 1982 Alkalophilic microorganisms. A new microbial world Japan Scientific Societies Press Berlin, Springer, New York

    Google Scholar 

  • Huber, R., Huber, G., Segerer, A., Seger, J., Stetter, K. O. 1987a Aerobic and anaerobic extremely thermophilic autotrophs 44–51 van Verseveld, H. W., and Duine, J. A. (ed.) Proceedings of the 5th International Symposium Martinus Nijhoff Publ Dordrecht

    Google Scholar 

  • Huber, R., Kristjansson, J., Stetter, K. O. 1987b Pyrobaculum gen. nov., a new genus of neutrophilic, rod-shaped archaebacteria from continental solfataras growing optimally at 100°C Arch. Microbiol. 149 95–101

    Article  CAS  Google Scholar 

  • Huber, R., Kurr, M., Jannasch, H. W., Stetter, K. O. 1989 A novel group of abyssal methanogenic archaebacteria (Methanopyrus) growing at 110°C Nature 342 833–834

    Article  Google Scholar 

  • Huber, R., Langworthy, T. A., König, H., Thomm, M., Woese, C. R., Sleytr, U. B., Stetter, K. O. 1986 Thermotoga maritima sp. nov. represents a new genus of unique extremely thermophilic eubacteria growing up to 90°C Arch. Microbiol. 144 324–333

    Article  CAS  Google Scholar 

  • Huber, R., Stoffers, P., Cheminee, J. L., Richnow, H. H., Stetter, K. O. 1990 Hyperthermophilic archaebacteria within th crater and open-sea plume of erupting Macdonald Seamount Nature 345 179–181

    Article  Google Scholar 

  • Hughes, M. N., Poole, R. K. 1989 Metals and microorganisms London Chapman and Hall

    Google Scholar 

  • Hungate, R. E. 1950 The anaerobic mesophilic cellulolytic bacteria Bacteriological Reviews 14 1–49

    PubMed  CAS  Google Scholar 

  • Hungate, R. E. 1962 Ecology of bacteria 95–119 Gunsalus, J. C., and Stanier, R. Y. (ed.) The bacteria, vol. IV: The physiology of growth New York Academic Press

    Google Scholar 

  • Hungate, R. E. 1966 The rumen and its microbes New York Academic Press

    Google Scholar 

  • Hungate, R. E. 1967 Hydrogen as an intermediate in the rumen fermentation Archiv für Mikrobiologie 59 158–164

    Article  PubMed  CAS  Google Scholar 

  • Hungate, R. E. 1975 The rumen microbial ecosystem Annual Review of Ecology and Systematics 6 39–66

    Article  CAS  Google Scholar 

  • Hussain, H. M. 1973 Ökologische Untersuchungen über die Bedeutung thermophiler Mikroorganismen für die Selbsterhitzung von Heu Zeitschrift für Allgemeine Mikrobiologie 13 323–334

    Article  PubMed  CAS  Google Scholar 

  • Hustede, E., Liebergesell, M., Schlegel, H. G. 1989 The photophobic response of various sulfur and nonsulfur purple bacteria Photochemistry and Photobiology 50 809–815

    Article  Google Scholar 

  • Iannotti, E. L., Kafkewit, D., Wolin, M. J., Bryant, M. P. 1973 Glucose fermentation products of Ruminococcus albus grown in continuous culture with Vibrio succinogenes: Changes caused by interspecies transfer of H2 Journal of Bacteriology 114 1231–1240

    PubMed  CAS  Google Scholar 

  • Imhoff, J. F., Trüper, H. G. 1977 Ectothiorhodospira halochloris sp. nov., a new extremely halophilic bacterium containing bacteriochlorophyll b Archives of Microbiology 114 115–121

    Article  CAS  Google Scholar 

  • Inniss, W. E. 1975 Interaction of temperature and psychrophilic microorganisms Annual Review of Microbiology 29 445–465

    Article  PubMed  CAS  Google Scholar 

  • Inniss, W. E., Ingraham, J. L. 1978 Microbial life at low temperatures: Mechanisms and molecular aspects 73–104 Kushner, D. J. (ed.) Microbial life in extreme environments London Academic Press

    Google Scholar 

  • Jaggar, J. 1983 Physiological effects of near-ultraviolet radiation on bacteria Photochemical and Photobiological Reviews 7 1–75

    Article  Google Scholar 

  • Jannasch, H. W. 1955 Zur Ökologie der zymogenen planktischen Bakterienflora natürlicher Gewässer Archiv für Mikrobiologie 23 146–180

    Article  PubMed  CAS  Google Scholar 

  • Jannasch, H. W. 1957 Die bakterielle Rotfärbung der Salzseen des Wadi Natrun (Ägypten) Archiv für Hydrobiologie 53 425–433

    Google Scholar 

  • Jannasch, H. W. 1958 Studies of planktonic bacteria by means of a direct membrane filter method Journal of General Microbiology 18 609–620

    Article  PubMed  CAS  Google Scholar 

  • Jannasch, H. W. 1960 Versuche über Denitrifikation und die Verfügbarketi des Sauerstoffes in Wasser und Schlamm Archiv für Hydrobiologie 56 335–369

    Google Scholar 

  • Jannasch, H. W. 1967 Enrichment of aquatic bacteria in continuous culture Archiv für Mikrobiologie 59 165–173

    Article  PubMed  CAS  Google Scholar 

  • Jannasch, H. W. 1977 Growth kinetics of aquatic bacteria Society for Applied Bacteriology Symposium Series 6 55–68

    Google Scholar 

  • Jannasch, H. W. 1978 Microorganisms and their aquatic habitat 17–24 Krumbein, W. E. (ed.) Environmental biogeochemistry and geomicrobiology, vol. 1 Ann Arbor, MI Ann Arbor Scientific Publications

    Google Scholar 

  • Jannasch, H. W. 1979 Microbial ecology of aquatic low-nutrient habitats 243–260 Shilo, M. (ed.) Strategies of microbial life in extreme environments Weinheim Verlag Chemie

    Google Scholar 

  • Jannasch, H. W. 1984 Microbial processes at deep sea hydrothermal vents 677–709 Rona, P. A., Bostrom, K., Laubier, L., and Smith, K. L. (ed.) Hydrothermal processes at seafloor spreading centers Plenum Publ New York

    Google Scholar 

  • Jannasch, H. W. 1989 Chemosynthetically sustained ecosystems in the deep sea 147–166 Schlegel, H. G., and Bowien, B. (ed.) Autotrophic bacteria Springer-Verlag Berlin

    Google Scholar 

  • Jannasch, H. W., Huber, R., Belkin, S., Stetter, K. O. 1988 Thermotoga neapolitana sp. nov. of the extremely thermophilic, eubacterial genus Thermotoga Arch. Microbiol. 150 103–104

    Article  Google Scholar 

  • Jannasch, H. W., Mateles, R. I. 1974 Experimental bacterial ecology studies in continuous culture Advances in Microbial Physiology 11 165–212

    Article  Google Scholar 

  • Jannasch, H. W., Nelson, D. C., Wirsen, C. O. 1989 Massive natural occurrence of unusually large bacteria (Beggiatoa sp.) at a hydrothermal deep-sea vent site Nature 342 834–836

    Article  CAS  Google Scholar 

  • Jannasch, H. W., Pritchard, P. H. 1972 The role of inert particulate matter in the activity of aquatic microorganisms Melchiorri-Santolinie, U., and Hopton, J. W. (ed.) Detritus and its role in aquatic ecosystems Memorie dell’Istituto Italiano di Idrobiologia Dott Marco de Marchi Pallanza Italy Suppl. 29 289–308

    Google Scholar 

  • Jannasch, H. W., Taylor, C. D. 1984 Deep-sea microbiology Ann. Rev. Microbiol. 37 487–514

    Article  Google Scholar 

  • Jannasch, H. W., Trüper, H. G., Tuttle, J. H. 1974 The microbial sulfur cycle in the Black Sea 419–425 Dergens, E. T., Ross, D. A. (ed.) The Black Sea: Its geology, chemistry and biology, Memoir 20 Tulsa American Association of Petroleum

    Google Scholar 

  • Jannasch, H. W., Wirsen, C. O. 1973 Deep-sea microorganisms: In situ response to nutrient enrichment Science 180 641–643

    Article  PubMed  CAS  Google Scholar 

  • Jannasch, H. W., Wirsen, C. O. 1977 Retrieval of concentrated and undecompressed microbial populations from the deep sea Applied and Environmental Microbiology 33 642–646

    PubMed  CAS  Google Scholar 

  • Jannasch, H. W., Wirsen, C. O. 1979 Chemosynthetic primary production at East Pacific sea floor spreading centers Bioscience 29 592–598

    Article  CAS  Google Scholar 

  • Jannasch, H. W., Wirsen, C. O. 1981 Morphological survey of microbial mats near deep sea thermal vents Appl. Environ. Microbiol. 41 528–538

    PubMed  CAS  Google Scholar 

  • Jannasch, H. W., Wirsen, C. O. 1982 Microbial activities in undecompressed and decompressed deep-seawater samples Appl. Environ. Microbiol. 43 1116–1124

    PubMed  CAS  Google Scholar 

  • Jannasch, H. W., Wirsen, C. O., Taylor, C. D. 1976 Undecompressed microbial populations from the deep sea Applied and Environmental Microbiology 32 360–367

    PubMed  CAS  Google Scholar 

  • Jannasch, H. W., Wirsen, C. O., Taylor, C. D. 1982 Deep-sea bacteria: isolation in the absence of decompression Science 216 1315–1317

    Article  PubMed  CAS  Google Scholar 

  • Jones, O. T. G. 1977 Electron transport and ATP synthesis in the photosynthetic bacteria 151–183 Haddock, B. A., and Hamilton, W. A. (ed.) Microbial energetics Cambridge Cambridge University Press

    Google Scholar 

  • Jones, W. J., Leigh, J. A., Mayer, F., Woese, C. R., Wolfe, R. S. 1983 Methanococcus jannaschii, sp. nov., an extremely thermophilic methanogen from a submarine hydrothermal vent Arch. Microbiol. 163 154–261

    Google Scholar 

  • Jones, W. J., Stugard, C. E., Jannasch, H. W. 1989 Comparison of thermophilic methanogens from submarine hydrothermal vents Arch. Microbiol. 151 314–318

    Article  CAS  Google Scholar 

  • Jørgensen, B. B. 1982 Ecology of the bacteria of the sulfur cycle with special reference to anoxic-oxic interface environments Phil. Tran. R. Soc. Lond., Biol. Sci. 298 543–561

    Article  Google Scholar 

  • Jørgensen, B. B., Zawacki, L. X., Jannasch, H. W. 1990 Thermophilic bacterial sulfate reduction in deep-sea sediments at the Guaymas Basin hydrothermal vent site (Gulf of California) Deep-Sea Res. 37 695–710

    Article  Google Scholar 

  • Jørgensen, B. B., Revsbech, N. P. 1983 Colorless sulfur bacteria, Beggiatoa spp. and Thiovulum spp., in O2 and H2S microgradients Appl. Environ. Microbiol. 45 1261–1270

    PubMed  Google Scholar 

  • Kato, G., Maruyama, Y., Nakamura, M. 1979 Role of lectins and lipopolysaccharides in the recognition process of specific legume-Rhizobium symbiosis Agricultural and Biological Chemistry 43 1085–1092

    Article  CAS  Google Scholar 

  • Kefford, B., Kjelleberg, S., Marshall, K. C. 1982 Bacterial scavenging: utilization of fatty acids localized at a solid-liquid interface Arch. Microbiol. 133 257–260

    Article  CAS  Google Scholar 

  • Kelly, M. T., Brock, T. D. 1969 Physiological ecology of Leucothrix mucor Journal of General Microbiology 59 153–162

    Article  PubMed  CAS  Google Scholar 

  • Kjelleberg, S., Hermansson, M., Mardén, P., Jones, G. W. 1987 The transient phase between growth and non growth of heterotrophic bacteria, with emphasis on the marine environment Annual Review of Microbiology 41 25–49

    Article  PubMed  CAS  Google Scholar 

  • Kluyver, A. J., Donker, H. J. L. 1925 The unity of the chemistry of the fermentative sugar dissimilation processes of microbes Proceedings of the Royal Academy of Amsterdam 28 297–313

    CAS  Google Scholar 

  • Kluyver, A. J., Donker, H. J. L. 1926 Die Einheit in der Biochemie Chemie der Zelle und Gewebe 13 134–190

    CAS  Google Scholar 

  • Koch, A. L. 1979 Microbial growth in low concentrations of nutrients 261–279 Shilo, M. (ed.) Strategies of microbial life in extreme environments Weinheim Verlag Chemie

    Google Scholar 

  • Kolkwitz, R. 1904–1906 Mykologie und Reinigung der städtischen und der Zuckerfabriksabwässer 391 Lafar, F. (ed.) Handbuch der technischen Mykologie, vol. 3 Jena Gustav Fischer Verlag

    Google Scholar 

  • Korhonen, T. K., Nurmiaho, E.-L., Tuovinen, O. H. 1978 Fimbriation in Thiobacillus A2 FEMS Microbiology Letters 3 195–198

    Article  Google Scholar 

  • Koshland, D. E., Jr. 1974 The chemotactic response in bacteria 133–160 Jaenicke, L. (ed.) Biochemistry of sensory functions Berlin Springer-Verlag

    Chapter  Google Scholar 

  • Koshland, D. E., Jr. 1976 Bacterial chemotaxis as a simple model for a sensory system Trends in Biochemical Sciences 1 1–3

    Article  CAS  Google Scholar 

  • Koshland, D. E. 1980 Bacterial chemotaxis as a model behavioral system New York Raven Press

    Google Scholar 

  • Koshland, D. E. 1981 Biochemistry of sensing and adaptation in a simple bacterial system Annual Review of Biochemistry 50 765–782

    Article  PubMed  CAS  Google Scholar 

  • Krinsky, N. I. 1979 Carotenoid pigments: Multiple mechanisms for coping with the stress of photosensitized oxidations 163–177 Shilo, M. (ed.) Strategies of microbial life in extreme environments Weinheim Verlag Chemie

    Google Scholar 

  • Krul, J. M., Hirsch, P., Staley, J. T. 1970 Toxothrix trichogenes (Chol.) Beger et Bringmann: The organism and its biology Antonie van Leeuwenhoek Journal of Microbiology and Serology 36 409–420

    Article  CAS  Google Scholar 

  • Krulwich, T. A., Guffanti, A. A. 1983 Physiology of acidophilic and alkalophilic bacteria Advances in Microbial Physiology 24 173–214

    Article  PubMed  CAS  Google Scholar 

  • Kuenen, J. G., Boonstra, H. G., Schröder, J., Veldkamp, H. 1977 Competition for inorganic substrates among chemoorganotrophic and chemolithotrophic bacteria Microbial Ecology 3 119–130

    Article  CAS  Google Scholar 

  • Kushner, D. J. 1971 Life in extreme environments 485–491 Buvet, R., and Ponnamperuma, C. (ed.) Chemical evolution and origin of life Amsterdam North-Holland

    Google Scholar 

  • Kushner, D. J. 1978 Life in high salt and solute concentrations: Halophilic bacteria 317–368 Kushner, D. J. (ed.) Microbial life in extreme environments London Academic Press

    Google Scholar 

  • Kuznezow, S. I. 1959 Die Rolle der Mikroorganismen im Stoffkreislauf der Seen Berlin VEB Deutscher Verlag der Wissenschaften

    Google Scholar 

  • Kuznezow, S. I. 1977 Trends in the development of ecological microbiology 1–48 Droop, M. R., and Jannasch, H. W. (ed.) Advances in aquatic microbiology London Academic Press

    Google Scholar 

  • Langworthy, T. A. 1978 Microbial life in extreme pH values 279–315 Kushner, D. J. (ed.) Microbial life in extreme environments London Academic Press

    Google Scholar 

  • Lanyi, J. K. 1979 Physical-chemical aspects of salt-dependence in Halobacteria 93–107 Shilo, M. (ed.) Strategies of microbial life in extreme environments Weinheim Verlag Chemie

    Google Scholar 

  • Lapage, S. P., Shelton, J. E., Mitchell, T. G., MacKenzie, A. R. 1970 Culture collections and the preservation of bacteria 135–228 Norris, J. R., and Ribbons, D. W. (ed.) Methods in microbiology, vol. 3A London Academic Press

    Google Scholar 

  • la Riviére, J. W. M. 1963 Cultivation and properties of Thiovulum majus Hinze 61–72 Oppenheimer, C. H. (ed.) Marine microbiology Springfield, Illinois Charles C. Thomas

    Google Scholar 

  • la Riviére, J. W. M. 1965 Enrichment of colorless sulfur bacteria Zentralblatt für Bakteriologie, Parasitenkunde, Infektionskrankheiten und Hygiene, Abt. 1, Suppl. 1 17–27

    Google Scholar 

  • Larsen, H. 1967 Biochemical aspects of extreme halophilism Advances in Microbial Physiology 1 97–132

    Article  CAS  Google Scholar 

  • Larsen, H. 1971 Halophilism, microbial McGraw-Hill encyclopedia of science and technology, 3rd ed New York McGraw-Hill

    Google Scholar 

  • Larsen, H. 1973 The halobacteria’s confusion to biology. The fourth A.J. Kluyver memorial lecture delivered before the Netherlands Society for Microbiology, April 1972 at the Delft University of Technology Antonie van Leeuwenhoek Journal of Microbiology and Serology 39 383–396

    Article  CAS  Google Scholar 

  • Larsen, H. 1986 Halophilic and holotolerant microorganisms—an overview and historical perspective FEMS Microbiology Reviews 39 3–7

    Article  CAS  Google Scholar 

  • Latham, M. J., Wolin, M. J. 1977 Fermentation of cellulose by Ruminococcus flavefaciens in the presence and absence of Methanobacterium ruminantium Applied and Environmental Microbiology 34 297–301

    PubMed  CAS  Google Scholar 

  • Latham, M. J., Brooker, B. E., Pettipher, G. L., Harris, P. J. 1978 Ruminococcus flavefaciens cell coat and adhesion to cotton cellulose and to cell walls in leaves of perennial ryegrass (Lolium perenne) Applied and Environmental Microbiology 35 156–165

    PubMed  CAS  Google Scholar 

  • Leathen, W. W., Braley, S. A., Sr., McIntyre, L. D. 1953 The role of bacteria in the formation of acid from certain sulfuritic constituents associated with bituminous coal. II. Ferrous iron oxidizing bacteria Applied Microbiology 1 65–68

    PubMed  CAS  Google Scholar 

  • Lee, A., Phillips, M. 1978 Isolation and cultivation of spirochetes and other spiral-shaped bacteria associated with the cecal mucosa of rats and mice Applied and Environmental Microbiology 35 610–613

    PubMed  CAS  Google Scholar 

  • Leifson, E. 1962 The bacterial flora of distilled and stored water. I. General observations, techniques and ecology International Bulletin of Bacteriological Nomenclature and Taxonomy 12 133–153

    Google Scholar 

  • Le Roux, N. W., Wakerley, D. S., Hunt, S. D. 1977 Thermophilic Thiobacillus-type bacteria from Icelandic thermal areas Journal of General Microbiology 100 197–201

    Article  Google Scholar 

  • Levi, P., Linkletter, A. 1989 Metals, microorganisms and biotechnology Hughes, M. N., and Poole, R. K. (ed.) Metals and microorganisms London Chapman and Hall

    Google Scholar 

  • Liener, I. E. 1976 Phytohemagglutinins (phytolectins) Annual Review of Plant Physiology 27 291–319

    Article  CAS  Google Scholar 

  • Loesche, W. J. 1969 Oxygen sensitivity of various anaerobic bacteria Applied Microbiology 18 723–727

    PubMed  CAS  Google Scholar 

  • Lovley, D. R., Phillips, E. J. P. 1987 Novel mode of microbial energy metabolism: Organic carbon oxidation coupled to dissimilatory reduction of iron or manganese Appl. Environ. Microbiol. 54 1472–1480

    Google Scholar 

  • Madigan, M. T., Brock, T. D. 1977 Adaptation by hot springs phototrophs to reduced light intensities Archives of Microbiology 113 111–120

    Article  PubMed  CAS  Google Scholar 

  • Mandel, M., Leadbetter, E. R., Pfennig, N., Trüper, H. G. 1971 Deoxyribonucleic acid base compositions of phototrophic bacteria International Journal of Systematic Bacteriology 21 222–230

    Article  Google Scholar 

  • Mann, S., Sparks, N. H., Frankel, R. B., Bazylinski, D. A., Jannasch, H. W. 1990 Biomineralization of ferrimagnetic greigite (FeS) and iron pyrite (FeS) in a magnetotactic bacterium Nature 343 258–261

    Article  CAS  Google Scholar 

  • Marchlewitz, B., Schwartz, W. 1961 Untersuchungen über die Mikroben-Assoziation saurer Grubenwässer Zeitschrift für Allgemeine Mikrobiologie 1 100–114

    Article  CAS  Google Scholar 

  • Marples, M. J. 1965 The ecology of the human skin Springfield, Illinois Charles C. Thomas

    Google Scholar 

  • Marples, M. J. 1974 The normal microbial flora of the skin 7–12 Skinner, F. A., and Carr, J. G. (ed.) The normal microbial flora of man London Academic Press

    Google Scholar 

  • Marples, M. J. 1976 Life on the human skin Scientific American 220 108–115

    Article  Google Scholar 

  • Marquis, R. E. 1976 High-pressure microbial physiology 159–241 Rose, A. H., and Tempest, D. W. (ed.) Advances in microbial physiology, vol. 14 London Academic Press

    Chapter  Google Scholar 

  • Marquis, R. E., Matsumara, P. 1978 Microbial life under pressure 105–158 Kushner, D. J. (ed.) Microbial life in extreme environments London Academic Press

    Google Scholar 

  • Marshall, K. C. 1976 Interfaces in microbial ecology Cambridge, London Harvard University Press

    Google Scholar 

  • Marshall, K. C. 1979 Growth at interfaces 281–290 Shilo, M. (ed.) Strategies of microbial life in extreme environments Weinheim Verlag Chemie

    Google Scholar 

  • Marshall, K. C. (ed.). 1984 Microbial adhesion and aggregation. Dahlem workshop reports, Life Science, vol. 31 Springer New York

    Google Scholar 

  • Martin, H. H. 1969 Die Struktur der Zellwand bei Gram-negativen Bakterien Arzneimittel-Forschung 19 266–272

    PubMed  CAS  Google Scholar 

  • Martin, S. M. 1964 Conservation of microorganisms Annual Review of Microbiology 18 1–16

    Article  PubMed  CAS  Google Scholar 

  • Marx, J. L. 1977 Looking at lectins: Do they function in recognition processes? Science 196 1429–1430

    Article  PubMed  CAS  Google Scholar 

  • Marx, R., Heumann, W. 1962 Uber Geisselfeinstrukturen und Fimbrien bei zwei Psuedomonas-Stämmen Archiv für Mikrobiologie 43 245–254

    Article  PubMed  CAS  Google Scholar 

  • Matin, A. 1979 Microbial regulatory mechanisms at low nutrient concentrations as studies in chemostat 323–339 Shilo, M. (ed.) Strategies of microbial life in extreme environments Weinheim Verlag Chemie

    Google Scholar 

  • Matin, A., Auger, E. A., Blum, P. H., Schultz, J. E. 1989 Genetic basis of starvation survival in nondifferentiating bacteria Annual Review of Microbiology 43 293–316

    Article  PubMed  CAS  Google Scholar 

  • Matin, A., Veldkamp, H. 1978 Physiological basis of the selective advantage of a Spirillum sp. in a carbon-limited environment Journal of General Microbiology 105 187–197

    Article  PubMed  CAS  Google Scholar 

  • Matin, A., Veldhuis, C., Stegemann, V., Veenhuis, M. 1979 Selective advantage of a Spirillum sp. in a carbon-limited environment. Accumulation of poly-β-hydroxybutyric acid and its role in starvation Journal of General Microbiology 112 349–355

    Article  PubMed  CAS  Google Scholar 

  • Matthews, M. M., Sistrom, W. R. 1959 Function of carotenoid pigments in non-photosynthetic bacteria Nature 184 1892–1893

    Article  Google Scholar 

  • Mayer, F. 1971 Elektronenmikroskopische Untersuchung der Fimbrienkontraktion bei dem sternbildenden Bodenbakterium Pseudomonas echinoides Archiv für Mikrobiologie 76 166–173

    Article  PubMed  CAS  Google Scholar 

  • Mayer, F., Schmitt, R. 1971 Elektronenmikroskopische, diffraktometrische und disc-elektrophoretische Untersuchungen an Fimbrien des sternbildenden Bodenbakteriums Pseudomonas echinoides und einer nicht-sternbildenden Mutante Archiv für Mikrobiologie 79 311–326

    Article  PubMed  CAS  Google Scholar 

  • Mazanec, K., Kocur, M., Martinec, T. 1965 Electron microscopy of ultrathin sections of Sporosarcina ureae Journal of Bacteriology 90 808–816

    PubMed  CAS  Google Scholar 

  • McBee, R. H. 1977 Fermentation in the hindgut 185–222 Clarke, R. T. J., and Bauchop, T. (ed.) Microbial ecology of the gut London Academic Press

    Google Scholar 

  • McLeod, R. A. 1968 On the role of inorganic ions in the physiology of marine bacteria Advances in the Microbiology of the Sea 1 95

    Google Scholar 

  • Meers, J. L. 1973 Growth of bacteria in mixed cultures CRC Critical Reviews in Microbiology 2 139–184

    Article  CAS  Google Scholar 

  • Megusar, F., Gantar, M. (ed.). 1986 Perspectives in microbial ecology Slovene Society for Microbiology Ljubljana, Yugoslavia

    Google Scholar 

  • Menzel, D. W., Ryther, J. H. 1970 Distribution and cycling of organic matter in the oceans Hood, D. W. (ed.) Organic matter in natural waters Alaska Institute of Marine-Sciences

    Google Scholar 

  • Millar, W. N. 1973 Heterotrophic bacterial population in acid coal mine water: Flavobacterium acidurans, sp. n International Journal of Systematic Bacteriology 23 142–150

    Article  Google Scholar 

  • Miller, R. E., Simons, L. A. 1962 Survival of bacteria after twenty-one years in the dried state Journal of Bacteriology 84 1111–1114

    PubMed  CAS  Google Scholar 

  • Miller, W. D. 1890 The micro-organisms of the human mouth, Philadelphia 1890 [unaltered reprint from original work]; Basel Karger

    Google Scholar 

  • Minato, H., Suto, T. 1978 Technique for fractionation of bacteria in rumen microbial ecosystem. II. Attachment of bacteria isolated from bovine rumen to cellulose powder in vitro and elution of bacteria attached therefrom Journal of General and Applied Microbiology 24 1–16

    Article  Google Scholar 

  • Mitskevich, I. N. 1979 The total number of biomass of microorganisms in deep waters of the Black Sea. [In Russian, with English summary.]; Mikrobiologiya 48 552–557

    CAS  Google Scholar 

  • Moore, W. E. C., Holdeman, L. V. 1974 Human fecal flora: The normal flora of 20 Japanese-Hawaiians Applied Microbiology 27 961–979

    PubMed  CAS  Google Scholar 

  • Morita, R. Y. 1975 Psychrophilic bacteria Bacteriological Reviews 39 144–167

    PubMed  CAS  Google Scholar 

  • Morita, R. Y. 1976 Survival of bacteria in cold and moderate hydrostatic pressure environments with special reference to psychrophilic and barophilic bacteria 279–298 Gray, T. G. R., and Postgate, J. R. (ed.) The survival of vegetative microbes Cambridge Cambridge University Press

    Google Scholar 

  • Morris, J. G. 1975 The physiology of obligate anaerobiosis Advances in Microbial Physiology 12 169–246

    Article  CAS  Google Scholar 

  • Morris, J. G. 1976 Fifth Stenhouse-Williams Memorial Lecture—oxygen and the obligate anaerobe Journal of Applied Bacteriology 40 229–244

    Article  PubMed  CAS  Google Scholar 

  • Morris, J. G. 1978 The biochemistry of anaerobiosis Biochemical Society Transactions 6 353–356

    PubMed  CAS  Google Scholar 

  • Morris, J. G. 1979 Nature of oxygen toxicity in anaerobic microorganisms 149–162 Shilo, M. (ed.) Strategies of microbial life in extreme environments Weinheim Verlag Chemie

    Google Scholar 

  • Morris, J. G., O’Brien, R. W. 1971 Oxygen and clostridia: A review 1–37 Barker, A. N., Gould, G. W., and Wolf, J. (ed.) Spore research 1971 London Academic Press

    Google Scholar 

  • Mossel, D. A. A. 1975 Water and micro-organisms in foods—a synthesis 347–361 Duckworth, R. B. (ed.) Water relations of foods London Academic Press

    Google Scholar 

  • Mossel, D. A. A., Ingram, M. 1955 The physiology of the microbial spoilage of foods Journal of Applied Bacteriology 18 232–268

    Article  CAS  Google Scholar 

  • Mountfort, D. O., Asher, R. A. 1983 Role of catabolic regulatory mechanism in control of carbohydrate utilization by the rumen anaerobic fungus Neocallimastix frontalis Applied and Environmental Microbiology 46 1331–1338

    PubMed  CAS  Google Scholar 

  • Müller, M. 1975 Biochemistry of protozoan microbodies: Peroxisomes, glycerophosphate oxidase bodies, hydrogenosomes Annual Review of Microbiology 29 467–483

    Article  PubMed  Google Scholar 

  • Müller-Neuglück, M., Engel, H. 1961 Photoinaktivierung von Nitrobacter winogradskyi Buch Archiv für Mikrobiologie 39 130–138

    Article  Google Scholar 

  • Mulder, E. G., Brotonegoro, S. 1974 Free-living heterotrophic nitrogen-fixing bacteria 37–85 Quispel, A. (ed.) The biology of nitrogen fixation Amsterdam North-Holland

    Google Scholar 

  • Nasim, A., James, A. P. 1978 Life under conditions of high irradiation 409–439 Kushner, D. J. (ed.) Microbial life in extreme environments London Academic Press

    Google Scholar 

  • Neijssel, O. M., Hueting, S., Crabbendam, K. J., Tempest, D. W. 1975 Dual pathways of glycerol assimilation in Klebsiella aerogenes NCIB 418. Their regulation and possible functional significance Archives of Microbiology 104 83–87

    Article  PubMed  CAS  Google Scholar 

  • Nelson, D. C., Jannasch, H. W. 1983 Chemoautotrophic growth of a marine Beggiatoa in sulfide-gradient cultures Arch. Microbiol. 136 262–269

    Article  CAS  Google Scholar 

  • Nelson, D. C., Jørgensen, B. B., Revsbech, N. P. 1986 Growth pattern and yield of a chemoautotrophic Beggiatoa sp. in oxygen-sulfide microgradients Appl. Environ. Microbiol. 53 225–233

    Google Scholar 

  • Nelson, D. C., Wirsen, C. O., Jannasch, H. W. 1989 Characterization of large, autotrophic Beggiatoa spp. abundant at hydrothermal vents of the Guaymas Basin Appl. Environ. Microbiol. 55 2909–2917

    PubMed  CAS  Google Scholar 

  • Noble, W. C., Pitcher, D. G. 1979 Microbial ecology of the human skin Advances in Microbial Ecology 2 245–289

    Google Scholar 

  • Noble, W. C., Somerville, D. A. 1974 Microbiology of human skin London W.B. Saunders

    Google Scholar 

  • Nottingham, P. M., Hungate, R. E. 1969 Methanogenic fermentation of benzoate Journal of Bacteriology 98 1170–1172

    PubMed  CAS  Google Scholar 

  • Nultsch, W. 1975 Phototaxis and photokinesis 29–90 Carlile, M. J. (ed.) Primitive sensory and communication systems: The taxes and tropisms of microorganisms and cells London Academic Press

    Google Scholar 

  • O’Brien, R. W., Morris, J. G. 1971 Oxygen and the growth and metabolism of Clostridium acetobutylicum Journal of General Microbiology 68 307–318

    Article  PubMed  Google Scholar 

  • Odum, E. P. 1977 Ecology: The link between the natural and the social sciences, 2nd ed London, UK Holt, Rinehart & Winston

    Google Scholar 

  • Ohta, K., Kiyomiya, A., Koyama, N., Nosoh, Y. 1975 The basis of the alkalophilic property of a species of bacillus Journal of General Microbiology 86 259–266

    Article  Google Scholar 

  • Okon, Y., Albrecht, S. L., Burris, R. H. 1976 Factors affecting growth and nitrogen fixation of Spirillum lipoferum Journal of Bacteriology 127 1248–1254

    PubMed  CAS  Google Scholar 

  • Oren, A., Padan, E. 1978 Induction of anaerobic, photoautotrophic growth in the cyanobacterium Oscillatoria limnetica Journal of Bacteriology 133 558–563

    PubMed  CAS  Google Scholar 

  • Oren, A., Shilo, M. 1979 Anaerobic heterotrophic dark metabolism in the cyanobacterium Oscillatoria limnetica: Sulfur respiration and lactate fermentation Archives of Microbiology 122 77–84

    Article  CAS  Google Scholar 

  • Orpin, C. G. 1972 The culture in vitro of the rumen bacterium Quin’s oval Journal of General Microbiology 73 523–530

    Article  PubMed  CAS  Google Scholar 

  • Orpin, C. G. 1973 The intracellular polysaccharide of the rumen bacterium Eadie’s oval Archiv für Mikrobiologie 90 247–254

    Article  PubMed  CAS  Google Scholar 

  • Orpin, C. G., Joblin, K. N. 1988 The rumen anaerobic fungi Hobson, P. N. (ed.) The rumen microbial ecosystem London Elsevier Science Publishers

    Google Scholar 

  • Ottow, J. C. G. 1975 Ecology, physiology, and genetics of fimbriae and pili Annual Review of Microbiology 29 79–108

    Article  PubMed  CAS  Google Scholar 

  • Overbeck, J. 1972 Zur Struktur und Funktion des aquatischen Ökosystems Berichte der Deutschen Botanischen Gesellschaft 85 553–579

    CAS  Google Scholar 

  • Pace, N. R., Stahl, D., Lane, D. J., Olsen, G. J. 1986 The analysis of natural microbial populations by ribosomal RNA sequences Adv. Microbiol. Ecol. 9 1–55

    CAS  Google Scholar 

  • Padan, E. 1979a Facultative anoxygenic photosynthesis in cyanobacteria Annual Review of Plant Physiology 30 27–40

    Article  CAS  Google Scholar 

  • Padan, E. 1979b Impact of facultatively anaerobic photoautotrophic metabolism on ecology of cyanobacteria (blue-green algae) Advances in Microbiol Ecology 3 1–48

    Article  CAS  Google Scholar 

  • Pask-Hughes, R. A., Williams, R. A. D. 1975 Extremely thermophilic Gram-negative bacteria from hot tap water Journal of General Microbiology 88 321–328

    Article  PubMed  CAS  Google Scholar 

  • Pask-Hughes, R. A., Williams, R. A. D. 1977 Yellow-pigmented strains of Thermus spp. from Icelandic hot springs Journal of General Microbiology 102 375–383

    Article  CAS  Google Scholar 

  • Patterson, H., Irvin, R., Costerton, J. W., Cheng, K.-J. 1975 Ultrastructure and adhesion properties of Ruminococcus albus Journal of Bacteriology 122 278–287

    PubMed  CAS  Google Scholar 

  • Pfennig, N. 1961 Eine vollsynthetische Nährlösung zur selektiven Anreicherung einiger Schwefelpurpurbakterien Naturwissenschaften 48 136

    Article  Google Scholar 

  • Pfennig, N. 1965 Anreicherungskulturen für rote und grüne Schwefelbakterien Zentralblatt für Bakteriologie, Parasitenkunde, Infektionskrankheiten und Hygiene, Abt. 1, Suppl. 1 179–189, 503–504

    Google Scholar 

  • Pfennig, N. 1967 Photosynthetic bacteria Annual Review of Microbiology 21 286–324

    Article  Google Scholar 

  • Pfennig, N. 1979 General physiology and ecology of photosynthetic bacteria 3–18 Sistrom, W. R., and Clayton, R. (ed.) Photosynthetic bacteria New York Plenum

    Google Scholar 

  • Pfennig, N., Biebl, H. 1976 Desulfuromonas acetoxidans gen. nov. and sp. nov., a new anaerobic, sulfur-reducing, acetate-oxidizing bacterium Archives of Microbiology 110 3–12

    Article  PubMed  CAS  Google Scholar 

  • Pfennig, N., Cohen-Bazire, G. 1967 Some properties of the green bacterium Pelodictyon clathratiforme Archiv für Mikrobiologie 59 226–236

    Article  PubMed  CAS  Google Scholar 

  • Pierson, B. K., Castenholz, R. W. 1974 A phototrophic gliding filamentous bacterium of hot springs. Chloroflexus aurantiacus, gen. and sp. nov Archives of Microbiology 100 5–24

    Article  PubMed  CAS  Google Scholar 

  • Poindexter, J. S. 1964 Biological properties and classification of the Caulobacter group Bacteriological Reviews 28 231–295

    PubMed  CAS  Google Scholar 

  • Poindexter, J. S. 1979 Morphological adaptation to low nutrient concentrations 341–356 Shilo, M. (ed.) Strategies of microbial life in extreme environments Weinheim Verlag Chemie

    Google Scholar 

  • Prebble, J., Huda, S. 1977 The photosensitivity of the malate oxidase system of a pigmented strain and a carotenoidless mutant of Sarcina lutea (Micrococcus luteus) Archives of Microbiology 113 39–42

    Article  PubMed  CAS  Google Scholar 

  • Pringsheim, E. G. 1957 Observations on Leucothrix mucor and Leucothrix cohaercus nov. sp. with a survey of colorless filamentous organisms Bacteriological Reviews 21 69–81

    PubMed  CAS  Google Scholar 

  • Prins, R. A. 1977 Biochemical activities of gut microorganisms 73–183 Clarke, R. T. J., and Bauchop, T. (ed.) Microbial ecology of the gut London Academic Press

    Google Scholar 

  • Raj, H. D. 1977 Leucothrix CRC Critical Reviews in Microbiology 5 271–301

    Article  PubMed  CAS  Google Scholar 

  • Ramaley, R. F., Hixson, J. 1970 Isolation of a nonpigmented, thermophilic bacterium similar to Thermus aquaticus Journal of Bacteriology 103 527–528

    PubMed  CAS  Google Scholar 

  • Reddy, C. A., Bryant, M. P., Wolin, M. J. 1972a Characteristics of S organism isolated from Methanobacillus omelianskii Journal of Bacteriology 109 539–545

    PubMed  CAS  Google Scholar 

  • Reddy, C. A., Bryant, M. P., Wolin, M. J. 1972b Ferredoxin-independent conversion of acetaldehyde to acetate and H2 in extracts of S organism Journal of Bacteriology 110 133–138

    PubMed  CAS  Google Scholar 

  • Reichelt, J. L., Baumann, P. 1973 Taxonomy of the marine, luminous bacteria Archiv für Mikrobiologie 94 283–330

    Article  Google Scholar 

  • Repaske, D. R., Adler, J. 1981 Change in intracellular pH of escherichia coli mediates the chemotactic response to certain attractants and repellents Journal of Bacteriology 145 1196–1208

    PubMed  CAS  Google Scholar 

  • Repeta, D. J., Simpson, D. J., Jørgensen, B. B., Jannasch, H. W. 1989 Evidence for anoxygenic photosynthesis from the distribution of bacteriochlorophylls in the Black Sea Nature 342 69–72

    Article  PubMed  CAS  Google Scholar 

  • Richards, F. A., Vaccaro, R. F. 1958 The Cariaco Trench, an anaerobic basin in the Caribbean Sea Deep-Sea Research 3 214–228

    Google Scholar 

  • Richards, F. R. 1975 The Cariaco basin (Trench) Oceanography and Marine Biology Annual Review 13 11–67

    CAS  Google Scholar 

  • Rittenberg, S. C. 1979 Bdellovibrio: A model of biological interactions in nutrient impoverished environments? 305–322 Shilo, M. (ed.) Strategies of microbial life in extreme environments Weinheim Verlag Chemie

    Google Scholar 

  • Robinson, J. B., Salonius, P. O., Chase, F. E. 1965 A note on the differential response of Arthrobacter spp. and Pseudomonas spp. to drying in soil Canadian Journal of Microbiology 11 746–748

    Article  PubMed  CAS  Google Scholar 

  • Rose, A. H. 1968 Physiology of microorganisms at low temperatures Journal of Applied Bacteriology 31 1–11

    Article  PubMed  CAS  Google Scholar 

  • Rosebury, T. 1972 Der Reinlichkeitstick Hamburg Hoffmann & Campe Verlag

    Google Scholar 

  • Rudd, J. W. M., Taylor, C. D. 1980 Methane cycling in aquatic environments Advances in Aquatic Microbiology 2 77–150

    CAS  Google Scholar 

  • Rupela, O. P., Tauro, P. 1973 Isolation and characterization of Thiobacillus from alkali soils Soil Biology and Biochemistry 5 891–897

    Article  CAS  Google Scholar 

  • Russell, C., Melville, T. H. 1978 A review: Bacteria in the human mouth Journal of Applied Bacteriology 44 163–181

    Article  PubMed  CAS  Google Scholar 

  • Rutter, P. R., Abbott, A. 1978 A study of the interaction between oral streptococci and hard surfaces Journal of General Microbiology 105 219–226

    Article  PubMed  CAS  Google Scholar 

  • Sadoff, H. L. 1973 Comparative aspects of morphogenesis in three prokaryotic genera Annual Review of Microbiology 27 133–153

    Article  PubMed  CAS  Google Scholar 

  • Sadoff, H. L. 1975 Encystment and germination in Azotobacter vinelandii Bacteriological Reviews 39 516–539

    PubMed  CAS  Google Scholar 

  • Savage, D. C. 1977a Microbial ecology of the gastrointestinal tract Annual Review of Microbiology 31 107–133

    Article  PubMed  CAS  Google Scholar 

  • Savage, D. C. 1977b Interactions between the host and its microbes 277–310 Clarke, R. T. J., and Bauchop, T. (ed.) Microbial ecology of the gut London Academic Press

    Google Scholar 

  • Savage, D. C., Fletcher, M. 1985 Bacterial adhesion New York Plenum Press

    Google Scholar 

  • Scarr, M. P. 1968 Thermophiles in sugar Journal of Applied Bacteriology 31 66–74

    Article  PubMed  CAS  Google Scholar 

  • Schenk, A., Aragno, M. 1979 Bacillus schlegelii, a new species of thermophilic, facultatively chemolithoautotrophic bacterium oxidizing molecular hydrogen Journal of General Microbiology 115 333–341

    Article  Google Scholar 

  • Schenk, E. A., Schwemmler, W. 1983 Endocytobiology II Walter de Gruyter Berlin

    Google Scholar 

  • Schlegel, H. G. (ed.) 1965 Anreicherungskultur und Mutantenauslese Zentralblatt für Bakteriologie, Parasitenkunde, Infektionskrankheiten und Hygiene, Abt. 1 Orig., Suppl. 1 179–189

    Google Scholar 

  • Schlegel, H. G., Bowien, B. 1989 Autotrophic bacteria Madison, WI Science Tech Publishers, New York, NY, Springer-Verlag

    Google Scholar 

  • Schlegel, H. G., Jannasch, H. W. 1967 Enrichment cultures Annual Review of Microbiology 21 49–70

    Article  PubMed  CAS  Google Scholar 

  • Schlegel, H. G., Pfennig, N. 1961 Die Anreicherungskultur einiger Schwefelpurpurbakterien Archiv für Mikrobiologie 38 1–39

    Article  PubMed  CAS  Google Scholar 

  • Schmaljohann, R., Flügel, H. J. 1987 Methane-oxidizing bacteria in Pogonophora Sarsia 72 91–98

    CAS  Google Scholar 

  • Schmidt, J. M. 1971 Prosthecate bacteria Annual Review of Microbiology 25 93–110

    Article  PubMed  CAS  Google Scholar 

  • Schmidt-Lorenz, W. 1967 Behavior of microorganisms at low temperatures Bulletin de l’Institut International du Froid 1–59

    Google Scholar 

  • Schnaitman, C., Lundgren, D. G. 1965 Organic compounds in the spent medium of Ferrobacillus ferrooxidans Canadian Journal of Microbiology 11 23–27

    Article  PubMed  CAS  Google Scholar 

  • Schön, G. H., Engel, H. 1962 Der Einfluss des Lichtes auf Nitrosomonas europaea Win Archiv für Mikrobiologie 42 415–428

    Article  Google Scholar 

  • Schroff, G., Schöttler, U. 1977 Anaerobic reduction of fumarate in the body wall musculature of Arenicola marina (Polychaeta) Journal of Comparative Physiology 116 325–336

    CAS  Google Scholar 

  • Schultz, J. E., Breznak, J. A. 1978 Heterotrophic bacteria present in hindguts of wood-eating termites [Reticulitermes flavipes (Kollar)]; Applied and Environmental Microbiology 35 930–936

    PubMed  CAS  Google Scholar 

  • Schultz, J. E., Breznak, J. A. 1979 Cross-feeding of lactate between Streptococcus lactis and Bacteroides sp. isolated from termite hindguts Applied and Environmental Microbiology 37 1206–1210

    PubMed  CAS  Google Scholar 

  • Schweinfurth, G., Lewin, L. 1898 Beiträge zur Topographie und Geochemie des ägyptischen Natron-thals Zeitschrift für die Gesamte Erdkunde 33 1–25

    CAS  Google Scholar 

  • Schwemmler, W., Schenk, E. A. 1980 Endocytobiology Berlin Walter de Gruyter

    Google Scholar 

  • Shilo, M. (ed.). 1979 Strategies of microbial life in extreme environments Weinheim Verlag Chemie

    Google Scholar 

  • Shokes, R. F., Trabant, P. K., Presley, B. J., Reid, D. F. 1977 Anoxic, hypersaline basin in the northern Gulf of Mexico Science 196 1443–1446

    Article  PubMed  CAS  Google Scholar 

  • Siñeriz, F., Pirt, S. J. 1977 Methane production from glucose by a mixed culture of bacteria in the chemostat: The role of Citrobacter Journal of General Microbiology 101 57–64

    Article  Google Scholar 

  • Singer, C. E., Ames, B. N. 1970 Sunlight ultraviolet and bacterial DNA base ratios Science 170 822–826

    Article  PubMed  CAS  Google Scholar 

  • Skopintsev, B. A., Karpov, A. V. Vershinina, O. A. 1959 Study of the dynamics of some sulfur compounds in the Black Sea under experimental conditions Soviet Oceanography Series [English translation]; 4 55–72

    Google Scholar 

  • Sleat, R., Robinson, J. P. 1984 The bacteriology of anaerobic degradation of aromatic compounds Journal of Applied Bacteriology 57 381–394

    Article  PubMed  CAS  Google Scholar 

  • Smith, D. W. 1978 Water relations of microorganisms in nature 369–380 Kushner, D. J. (ed.) Microbial life in extreme environments London Academic Press

    Google Scholar 

  • Sneath, P. H. A. 1962 Longevity of micro-organisms Nature 195 643–646

    Article  PubMed  CAS  Google Scholar 

  • Somerville, C. C., Knight, I. T. Straube, W. L., Colwell, R. R. 1989 Simple, rapid method for direct isolation of nucleic acids from aquatic environments Appl. Environ. Microbiol. 55 548–554

    PubMed  CAS  Google Scholar 

  • Sorokin, Y. I. 1964 On the primary production and bacterial activities in the Black Sea Journal du Conseil, Conseil International pour l’Exploration de la Mer 29 41–60

    CAS  Google Scholar 

  • Sorokin, Y. I. 1970 Interrelations between sulphur and carbon turnover in meromictic lakes Archiv für Hydrobiologie 66 391–446

    Google Scholar 

  • Sorokin, Y. I. 1972 The bacterial population and process of sulfide oxidation in the Black Sea J. Cons. Int. Explor. Mer 34 423–454

    CAS  Google Scholar 

  • Souza, K. A., Deal, P. H. 1977 Characterization of a novel extremely alkaline bacterium Journal of General Microbiology 101 103–109

    Article  Google Scholar 

  • Souza, K. A., Deal, P. H., Mack, H. M., Turnbill, C. E. 1974 Growth and reproduction of microorganisms under extremely alkaline conditions Applied Microbiology 28 1066–1068

    PubMed  CAS  Google Scholar 

  • Stahl, D. A., Flesher, B., Mansfield, H. R., Montgomery, L. 1988 Use of phylogenetically based hybridization probes for studies of ruminal microbial ecology Appl. Environ. Microbiol. 54 1079–1084

    PubMed  CAS  Google Scholar 

  • Stahl, D. A., Lane, D. J., Olsen, G. J., Pace, N. R. 1985 Characterization of a Yellowstone hot spring microbial community by 5S rRNA sequences Appl. Environ. Microbiol. 49 1379–1384

    PubMed  CAS  Google Scholar 

  • Stanier, R. Y. 1942 The cytophaga group: A contribution to the biology of Mycobacteria Bacteriological Reviews 6 143–196

    PubMed  CAS  Google Scholar 

  • Stapp, C., Bortels, H. 1931 Der Pflanzenkrebs und sein Erreger Pseudomonas tumefaciens. II. Mitteilung: Über den Lebenskreislauf von Pseudomonas tumefaciens Zeitschrift für Parasitenkunde 4 101–125

    Article  Google Scholar 

  • Stapp, C., Knösel, D. 1954 Zur Genetik sternbildender Bakterien Zentralblatt für Bakteriologie, Parasitenkunde, Infektionskrankheiten und Hygiene, Abt. 2. 108 244–259

    Google Scholar 

  • Steinbüchel, A. 1986 Anaerobic pyruvate metabolism of Trichomonas foetus and Trichomonas vaginalis hydrogenosomes Molecular Biochemistry Parasitology 20 57–65

    Article  Google Scholar 

  • Stetter, K. O. 1986 Diversity of extremely thermophilic archaebacteria 39–74 Brock, T. D. (ed.) Thermophiles, general, molecular and applied microbiology New York J. Wiley & Sons

    Google Scholar 

  • Stetter, K. O. 1989 Extremely thermophilic chemolithoautotrophic archaebacteria 167–176 Schlegel, H. G., Bowien, B. (ed.) Autotrophic bacteria Madison, WI Science Tech Publishers

    Google Scholar 

  • Stetter, K. O., Fiala, G., Huber, G., Huber, R., Segerer, A. 1990 Hyperthermophilic microorganisms FEMS Microbiology Reviews 75 117–124

    Article  Google Scholar 

  • Stetter, K. O., König, H., Stackebrandt, E. 1983 Pyrodictium gen. nov., a new genus of submarine disc-shaped sulphur reducing archaebacteria growing optimally at 105°C Syst. Appl. Microbiol. 4 535–551

    Article  PubMed  CAS  Google Scholar 

  • Stetter, K. O., Zillig, W. 1985 Thermoplasma and the thermophilic sulfur-dependent archaebacteria 85–170 Wolfe, R. S., and Woese, C. R. (ed.) The bacteria, vol. 8 New York Academic Press

    Google Scholar 

  • Stockhausen, F. 1907 Okologie, “Anhäufungen” nach Beijerinck Berlin Institut für Gärungsgewerbe

    Google Scholar 

  • Strange, R. E. 1976 Microbiol response to mild stress Durham, England Meadowfield Press

    Google Scholar 

  • Strength, W. J., Isani, B., Linn, D. M., Williams, F. D., Vandermolen, G. E., Laughon, B. E., Krieg, N. R. 1976 Isolation and characterization of Aquaspirillum fascilus sp. nov., a rod-shaped, nitrogen-fixing bacterium having unusual flagella International Journal of Systematic Bacteriology 26 253–268

    Article  Google Scholar 

  • Strohl, W. R., Larkin, J. M. 1979 Enumeration, isolation, and characterization of Beggiatoa from freshwater sediments Applied and Environmental Microbiology 36 755–770

    Google Scholar 

  • Stumm, C. K., Zwart, K. B. 1986 Symbiosis of protozoa with hydrogen-utilizing methanogens Microbiological Sciences 3 100–105

    PubMed  CAS  Google Scholar 

  • Sverdrup, H. W., Johnson, M. W., Fleming, R. H. 1942 The oceans London Prentice-Hall

    Google Scholar 

  • Swart-Füchtbauer, H., Rippel-Baldes, A. 1951 Die baktericide Wirkung des Sonnenlichtes Archiv für Mikrobiologie 16 358–362

    Article  Google Scholar 

  • Switalski, L., Hook, M., Beachey, E. H. 1989 Molecular mechanisms of microbial adhesion New York Springer-Verlag

    Google Scholar 

  • Tannock, G. W. 1990 The Microecology of lactobacilli inhabiting the gastrointestinal tract Advances in Microbial Ecology 11 147–171

    Article  Google Scholar 

  • Tansey, M. R., Brock, T. D. 1978 Microbial life at high temperatures: Ecological aspects 159–216 Kushner, D. J. (ed.) Microbial life in extreme environments London Academic Press

    Google Scholar 

  • Tempest, D. W., Meers, J. L., Brown, C. M. 1970 Synthesis of glutamate in Aerobacter aerogenes by a hitherto unknown route Biochemical Journal 117 405–407

    PubMed  CAS  Google Scholar 

  • Tempest, D. W., Meers, J. L., Brown, C. M. 1973 Glutamate synthetase (Gogat): A key enzyme in the assimilation of ammonia by prokaryotic organisms 167–182 Prusiner, S., and Stadtman, E. R. (ed.) The enzymes of glutamine metabolism New York Academic Press

    Google Scholar 

  • Tempest, D. W., Neijssel, O. M. 1976 Microbial adaptation of low-nutrient environments 283–296 Dean, A. C. R., Ellwood, D. C., Evans, C. G. T., and Melling, J. (ed.) Continuous culture 6: Applications and new fields Chichester Ellis Horwood

    Google Scholar 

  • Tempest, D. W., Neijssel, O. M. 1979 Eco-physiological aspects of microbial growth in aerobic nutrient-limited environments Advances in Microbial Ecology 2 105–153

    Google Scholar 

  • Thiele, H. H. 1968 Die Verwertung einfacher organischer Substrate durch Thiorhodaceae Archiv für Mikrobiologie 60 124–138

    Article  PubMed  CAS  Google Scholar 

  • Tindall, B. J., Trüper, H. G. 1986 Ecophysiology of the aerobic halophilic archaebacteria Systematic and Applied Microbiology 7 202–212

    Article  CAS  Google Scholar 

  • Torma, A. E. 1977 The role of Thiobacillus ferrooxidans in hydrometallurgical processes Advances in Biochemical Engineering 6 1–37

    Article  CAS  Google Scholar 

  • Torsvik, V. L., Goksoyr, J. 1978 Determination of bacterial DNA in soil Soil Biol. Biochem. 10 7–12

    Article  Google Scholar 

  • Trüper, H. G. 1969 Bacterial sulfate reduction in the Red Sea hot brines 262–271 Degens, E. T., and Ross, D. A. (ed.) Hot brines and recent heavy metal deposits in the Red Sea New York Springer-Verlag

    Google Scholar 

  • Trüper, H. G. 1976 Higher taxa of the phototrophic bacteria: Chloroflexaceae fam. nov., a family for the gliding filamentous, phototrophic “green” bacteria International Journal of Systematic Bacteriology 26 74–75

    Article  Google Scholar 

  • Tschech, A. 1989 Der anaerobe Abbau von aromatischen Verbindungen Forum Mikrobiologie 12 251–264

    CAS  Google Scholar 

  • Tuovinen, O. H., Kelly, D. P. 1972 Biology of Thiobacillus ferrooxidans in relation to the microbiological leaching of sulphide ores Zeitschrift für Allgemeine Mikrobiologie 12 311–346

    Article  PubMed  CAS  Google Scholar 

  • Tuttle, J. H., Randles, C. I., Dugan, P. R. 1968 Activity of microorganisms in acid mine water. I. Influence of acid water on aerobic heterotrophs of a normal stream Journal of Bacteriology 95 1495–1503

    PubMed  CAS  Google Scholar 

  • Uesugi, I., Yajima, M. 1978 Oxygen and “strictly anaerobic” intestinal bacteria. I. Effects of dissolved oxygen on growth Zeitschrift für Allgemeine Mikrobiologie 18 287–295

    Article  PubMed  CAS  Google Scholar 

  • Umbreit, T. H., Pate, J. L. 1978 Characterization of the holdfast region of wild-type cells of holdfast mutants of Asticcacaulis biprosthecum Archives of Microbiology 118 157–168

    Article  Google Scholar 

  • Unterman, P. M., Baumann, P., McLean, D. L. 1989 Pea aphid symbiont relationships established by analysis of 16S rRNAs J. Bacteriol. 171 2970–2974

    PubMed  CAS  Google Scholar 

  • van Gemerden, H. 1974 Coexistence of organisms competing for the same substrate: An example among the purple sulfur bacteria Microbial Ecology 1 104–119

    Article  Google Scholar 

  • van Niel, C. B. 1932 On the morphology and physiology of the purple and green sulphur bacteria Archiv für Mikrobiologie 3 1–112

    Article  Google Scholar 

  • van Niel, C. B. 1936 On the metabolism of the Thiorhodaceae Archiv für Mikrobiologie 7 323–358

    Article  Google Scholar 

  • van Niel, C. B. 1955 The microbe as a whole 3–12 Waksman, S. A. (ed.) Perspectives and horizons in microbiology New Brunswick Rutgers University Press

    Google Scholar 

  • van Veen, W. L., Mulder, E. G., Deinema, M. H. 1978 The Sphaerotilus-Leptothrix group of bacteria Microbiological Reviews 42 329–356

    PubMed  Google Scholar 

  • Vedder, A. 1934 Bacillus alcalophilus sp. nov., benevens enkle ervaringen met sterk alcalische voedingsbodems Antonie van Leeuwenhoek Journal of Microbiology and Serology 1 141–147

    Article  Google Scholar 

  • Veldkamp, H. 1970 Enrichment cultures of prokaryotic organisms 305–361 Norris, J. R., and Ribbons, D. W. (ed.) Methods in microbiology, vol. 3A London Academic Press

    Google Scholar 

  • Veldkamp, H. 1976 Continuous culture in microbial physiology and ecology Patterns of progress. Durham Meadowfield Press

    Google Scholar 

  • Veldkamp, H., Jannasch, H. W. 1972 Mixed culture studies with the chemostat Journal of Applied Chemistry and Biotechnology 22 105–123

    Article  CAS  Google Scholar 

  • Veldkamp, H., van den Berg, G., Zevenhuizen, L. P. T. M. 1963 Glutamic acid production by Arthrobacter globiformis Antonie van Leeuwenhoek Journal of Microbiology and Serology 29 35–51

    Article  CAS  Google Scholar 

  • Voelz, H., Dworkin, M. 1962 Fine structure of Myxococcus xanthus during morphogenesis Journal of Bacteriology 84 943–952

    PubMed  CAS  Google Scholar 

  • Völker, H., Schweisfurth, R., Hirsch, P. 1977 Morphology and ultrastructure of Crenothrix polyspora Cohn Journal of Bacteriology 131 306–313

    PubMed  Google Scholar 

  • Walsby, A. E. 1970 The gas vesicles of aquatic prokaryotes Regulations between structure and function in the prokaryotic cell Society for General Microbiology Symposium 28 327–357 London, New York, Melbourne, Cambridge University Press

    Google Scholar 

  • Walsby, A. E. 1975 Gas vesicles Annual Review of Plant Physiology 26 427–439

    Article  CAS  Google Scholar 

  • Walsby, A. E. 1977 The gas vacuoles of blue-green algae Scientific American 237 90–97

    Article  CAS  Google Scholar 

  • Wangersky, P. J. 1976 The surface film as a physical environment Annual Review of Ecology and Systematics 7 161–176

    Article  Google Scholar 

  • Watson, S. W., Waterbury, J. B. 1969 The sterile hot brines of the Red Sea 272–281 Degens, E. T., and Ross, D. A. (ed.) Hot brines and recent heavy metal deposit in the Red Sea New York Springer-Verlag

    Google Scholar 

  • Weibull, C. 1960 Movement 153–205 Gunsalus, I. C., and Stanier, R. Y. (ed.) The bacteria, vol. 1: Structure New York Academic Press

    Google Scholar 

  • Weimer, P. J., Zeikus, J. G. 1977 Fermentation of cellulose and cellobiose by Clostridium thermocellum in the absence and presence of Methanobacterium thermoautotrophicum Applied and Environmental Microbiology 33 289–297

    PubMed  CAS  Google Scholar 

  • Weiner, R. M., Devine, R. A., Powell, D. M., Dagasan, L., Moore, R. L. 1985 Hyphomonas oceanitis spec. nov., H. hirschiana spec. nov. and H. jannaschiana spec. nov Int. J. System. Bact. 35 237–243

    Article  Google Scholar 

  • Weiss, R. L. 1973 Attachment of bacteria to sulphur in extreme environments Journal of General Microbiology 77 501–507

    Article  CAS  Google Scholar 

  • Weller, R., Ward, D. M. 1989 Selective recovery of 16S rRNA sequences from natural microbial communities in the form of cDNA Appl. Environ. Microbiol. 55 1818–1822

    PubMed  CAS  Google Scholar 

  • Whittaker, R. H., Levin, S. A., Root, R. B. 1973 Niche, habitat and ecotope American Naturalist 107 321–338

    Article  Google Scholar 

  • Whittenbury, R., Davies, S. L., Davey, J. F. 1970 Exospores and cysts formed by methane-utilizing bacteria Journal of General Microbiology 61 219–226

    Article  PubMed  CAS  Google Scholar 

  • Wiegel, J., Schlegel, H. G. 1976 Enrichment and isolation of nitrogen fixing hydrogen bacteria Archives of Microbiology 107 139–142

    Article  PubMed  CAS  Google Scholar 

  • Wiegel, J., Wilke, D., Baumgarten, J., Opitz, R., Schlegel, H. G. 1978 Transfer of the nitrogen fixing hydrogen bacterium Corynebacterium autotrophicum (Baumgarten et al.) to Xanthobacter gen. nov International Journal of Systematic Bacteriology 28 573–581

    Article  Google Scholar 

  • Wiley, W. R., Stokes, J. L. 1963 Effect of pH and ammonium ions on the permeability of Bacillus pasteurii Journal of Bacteriology 86 1152–1156

    PubMed  CAS  Google Scholar 

  • Williams, A. G. 1986 Rumen holotrich ciliate protozoa Microbiological Review 50 25–49

    CAS  Google Scholar 

  • Windberger, E., Huber, R., Trincone, A., Fricke, H., Stetter, K. O. 1989 Thermotoga thermarum sp. nov. and Thermotoga neapolitana occurring in African continental sulfataric springs Arch. Microbiol. 151 506–512

    Article  CAS  Google Scholar 

  • Winfrey, M. R., Zeikus, J. G. 1977 Effect of sulfate on carbon and electron flow during microbial methanogenesis in fresh-water sediments Applied and Environmental Microbiology 33 275–281

    PubMed  CAS  Google Scholar 

  • Winogradsky, S. N. 1925 Etudes sur la microbiologie du sol. I. Sur la m;aaethode Annales de l’Institut Pasteur 39 299–354

    Google Scholar 

  • Winogradksy, S. N. 1926 Études sur la microbiologie du sol. Sur les microbes fixateurs d’azote Annales de l’Institut Pasteur 40 455–520

    Google Scholar 

  • Winogradsky, S. N. 1947 Principles de la Microbiologie Ecologique Antonie van Leeuwenhoek Journal of Microbiology and Serology 12 5–15

    Article  CAS  Google Scholar 

  • Winogradsky, S. N. 1949 Microbiologie du sol: Problèmes et Méthodes Paris Masson et Cie

    Google Scholar 

  • Wirsen, C. O., Jannasch, H. W. 1975 Activity of marine psychrophilic bacteria at elevated hydrostatic pressures and low temperatures Mar. Biol. 31 201–209

    Article  CAS  Google Scholar 

  • Wirsen, C. O., Jannasch, H. W. 1978 Physiological and morphological observations on Thiovulum sp Journal of Bacteriology 136 765–774

    PubMed  CAS  Google Scholar 

  • Woese, C. R. 1987 Bacterial evolution Microbiol. Rev. 51 221–271

    PubMed  CAS  Google Scholar 

  • Wolfe, R. S. 1960 Observations and studies of Crenothrix polyspora Journal of American Water Works Association 52 915–918

    Google Scholar 

  • Wolin, M. J. 1976 Interactions between H2-producing and methane-producing species 141–150 Schlegel, H. G., Gottschalk, G., and Pfennig, N. (ed.) Microbial production and utilization of gases Göttingen Goltze

    Google Scholar 

  • Wolin, M. J., Miller, T. L. 1982 Interspecies hydrogen transfer: 15 years later ASM-News 48 561–565

    Google Scholar 

  • Woodroffe, R. C. S., Shaw, D. A. 1974 Natural control and ecology of microbial populations on skin and hair 13–34 Skinner, F. A., and Carr, J. G. (ed.) The normal microbial flora of man London Academic Press

    Google Scholar 

  • Yayanos, A. A., Dietz, A. S. 1983 Death of a hadal deep-sea bacterium after decompression Science Washington 220 497–498

    Google Scholar 

  • Yayanos, A. A., Dietz, A. S., Van Boxtel, R. 1979 Isolation of a deep-sea barophilic bacterium and some of its growth characteristics Science Washington 205 808–810

    Google Scholar 

  • Yayanos, A. A., Dietz, A. S., Van Boxtel, R. 1981 Obligately barophilic bacterium from the Marianas Trench Proc. Nat. Acad. Sci., USA 78 5212–5215

    Article  CAS  Google Scholar 

  • Yayanos, A. A., Dietz, A. S., Van Boxtel, R. 1982 Dependence of reproduction rate on pressure as a hallmark of deep-sea bacteria Appl. Environ. Microbiol. 44 1356–1361

    PubMed  CAS  Google Scholar 

  • Zaitsev, Yu. P. 1971 Vinogradov K. A. (ed.) Marine neustonology Jerusalem Keter Press

    Google Scholar 

  • Zebe, E. 1977 Anaerober Stoffwechsel bei wirbellosen Tieren Vorträge der Rheinisch-Westfälischen Akademie der Wiseenschaften

    Google Scholar 

  • Zeikus, J. G., Wolfe, R. S. 1972 Methanobacterium thermoautotrophicus sp. n., an anaerobic, autotrophic, extreme thermophile Journal of Bacteriology 109 707–713

    PubMed  CAS  Google Scholar 

  • Zhao, H., Wood, A. G., Widdel, F., Bryant, M. P. 1988 An extremely thermophilic Methanococcus from a deep-sea hydrothermal vent and its plasmids Arch. Microbiol. 150 178–183

    Article  CAS  Google Scholar 

  • Zillig, W., Schnabel, R., Tu, J., Stetter, K. O. 1982 The phylogeny of archaebacteria, including novel anaerobic thermoacidophiles in the light of RNA polymerase structure Naturwiss. 69 197–204

    Article  CAS  Google Scholar 

  • Zillig, W., Stetter, K. O., Schäfer, W., Janekovic, D., Wunderl, S., Holz, I., Palm, P. 1981 Thermoproteales: a novel type of extremely thermoacidophilic anaerobic archaebacteria isolated from Icelandic solfataras Zlb. Bakt. Hyg., I. Abt. Orig. C 2 205–227

    CAS  Google Scholar 

  • ZoBell, C. E. 1946 Marine microbiology, a monograph on hydrobacteriology Waltham, Massachusetts Chronica Botanica

    Google Scholar 

  • ZoBell, C. E. 1970 Pressure effects of morphology and life processes 85–130 Zimmermann, A. (ed.) High pressure effects on cellular processes London Academic Press

    Google Scholar 

  • ZoBell, C. E., Johnson, F. H. 1949 The influence of hydrostatic pressure on the growth and viability of terrestrial and marine bacteria J. Bacteriol. 57 179–189

    PubMed  CAS  Google Scholar 

  • ZoBell, C. E., Morita, R. Y. 1957 Barophilic bacteria in some deep sea sediments Journal of Bacteriology 73 563–568

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag

About this entry

Cite this entry

Schlegel, H.G., Jannasch, H.W. (2006). Prokaryotes and Their Habitats. In: Dworkin, M., Falkow, S., Rosenberg, E., Schleifer, KH., Stackebrandt, E. (eds) The Prokaryotes. Springer, New York, NY. https://doi.org/10.1007/0-387-30741-9_6

Download citation

Publish with us

Policies and ethics