Skip to main content

Oilfield application for biocides

  • 5 Fields of application
  • Reference work entry
  • First Online:
Directory of Microbicides for the Protection of Materials

1 5.4.1 Introduction

Oil and gas production occurs throughout the world. Each oilfield is unique and the construction and development of each new oilfield presents many challenges and opportunities for petroleum engineers. Differences in geology, topography, and climate in and around an oilfield will dictate how the oilfield is developed, maintained, and eventually decommissioned. However, one thing that is a constant in an oilfield, regardless of its location, is the need for biocides. Biocides are used in all stages of oilfield development, from the initial drilling of the wells and the day to day production of oil and gas, and in all aspects of the maintenance of the field. They play an important role in the life of an oilfield and are a valuable tool in ensuring that oil and gas are produced safely and reliably. This chapter will describe various aspects of the use of biocides in the production of oil and gas.

1.1 The world’s oilfields

Petroleum production is currently on going on...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 449.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    *

    see Part Two — Microbicide Data

References

  1. Antolga, K. M. and Griffin, W. M., 1985. Characterization of Sulfate-Reducing bacteria isolated from oilfield waters. Dev. Ind. Microbiol. 26, 597–610.

    Google Scholar 

  2. Bakke, R., Rivedal, B. and Mehan, S. 1992. Oil reservoir biofouling control. Biofouling 6, 53–60.

    Article  CAS  Google Scholar 

  3. Bard, A. J., Parsons, R. and Jordan, J., 1985. Standard Potentials in Aqueous Solutions, IUPAC Marcel Dekker, New York, USA

    Google Scholar 

  4. Bonin, M., Grierson, D. S., Royer, J. and Husson, H.-P., 1992. A stable chiral 1,4-Dihydropyridine equivalent for the asymmetric synthesis of substituted piperidines: 2-Cyano-6-Phenyloxazolopiperidine. Org. Synth. 70, 54–57.

    Article  CAS  Google Scholar 

  5. Borenstein, S. W., 1994. Microbiologically Influenced Corrosion Handbook, Woodhead Publishing Ltd.

    Google Scholar 

  6. Bradley, H. B., (ed.), 1987. Petroleum Engineering Handbook, Richardson, TX, Society of Petroleum Engineers, for detailed technical and engineering information on the design, construction and operation of an oilfield.

    Google Scholar 

  7. Bryan, E., Buckley, A. J., Macleod, N., Talbot, R. E. and Veale, M. A., 1995. “Control of Reservoir Souring by a Novel Biocide.” Corrosion/95, Paper No. 197, (Orlando, FL: NACE 1995).

    Google Scholar 

  8. Burger, E. D., Vance, I., Gammack, G. F. and Duncan, S. E., 1995. “Control of Microbially-Generated Hydrogen Sulfide in Produced Waters,” Presented at the 5th International Conference on Microbial Enhanced Oil Recovery and Related Biotechnology for Solving Environmental Problems, September 1995, Plano, TX.

    Google Scholar 

  9. Burger, E. D. and Odom, J. M., 1999. “Mechanisms of Anthraquinone Inhibition of Sulfate-Reducing Bacteria,” SPE50764, Society of Petroleum Engineers of AIME.

    Google Scholar 

  10. Burm, B. E. A., Meijler, M. M., Korver, J., Wanner, M. J. and Koomen, G.-J., 1998. Synthesis of the brominated marine alkaloids (±)-Arborescidine A, B, and C. Tetrahedron 54, 6135–6146.

    Article  CAS  Google Scholar 

  11. Characklis, W. G., 1981. Fouling biofilm development: A process analysis. Biotechnol. Bioeng. 23, 1923–1960.

    Article  CAS  Google Scholar 

  12. Characklis, W. G. and Marshall, K. C., (eds.), 1990. Biofilms, New York, John Wiley and Sons.

    Google Scholar 

  13. Clark, J. B., Luppens, J. C. and Tucker, P. T., 1984. “Using Ultraviolet Radiation for Controlling Sulfate-Reducing Bacteria in Injection Water,” SPE Paper No. 13245, Society of Petroleum Engineers of AIME.

    Google Scholar 

  14. Cooling III, F. B., Maloney, C. L., Nagel, E., Tabinowski, J. and Odom, J. M., 1996. Inhibition of sulfate respiration by 1,8-dihydroxyanthraquinone and other anthraquinone derivatives. Applied and Environmental Microbiology 62, 2999–3004.

    CAS  Google Scholar 

  15. Costerton, J. W., Geesey, G. G. and Cheng, K. J., 1978. How bacteria stick. Sci. Am. 238, 86–95.

    Article  CAS  Google Scholar 

  16. Costerton, J. W., Cook, G. and Lamont, R., 1999. The community architecture of biofilms: Dynamic structures and mechanisms. In: H. N. Newman and M. Wilson et al. (eds.), Dental Plaque Revisited: Oral Biofilms in Health and Disease, BioLine, Cardiff, UK Antony Rowe Ltd., pp. 1–13.

    Google Scholar 

  17. Costerton, J. W. and Stewart, P. S., 2000. Biofilms and Device-Related infections. In: J. P. Nataro, M. J. Blaser and S. Cunningham-Rundles (eds.), Persistent Bacterial Infections, Washington, D.C., ASM Press, pp. 423–439.

    Chapter  Google Scholar 

  18. Darley, H. C. H. and Gray, G. R., 1988. In: Composition and Properties of Drilling and Completion Fluids. 5th edn., Gulf Professional Publishing, Houston, TX and references therein.

    Google Scholar 

  19. Davis, R. A. and McElhiney, J. E., 2002. “The Advancement of Sulfate Removal from Seawater in Offshore Waterflood Applications.” Corrosion/2002, Paper No. 02314, (Denver, CO: NACE 2002).

    Google Scholar 

  20. Diaz, R., Haack, T. and Talbot, R. E., 1998. “Tetrakishydroxymethylphosphonium Sulfate (THPS): A New Oilfield Biocide Providing Iron Sulfide Dissolution and Environmental Benefits”, Presented at Exitep 98, Mexico City, 15–16 November.

    Google Scholar 

  21. Eisner, U. and Kuthan, J., 1972. Chemistry of dihydropyridines. Chemical Reviews 72, 1–42, and references cited therein.

    Article  CAS  Google Scholar 

  22. Foos, J., Steel, F., Rizvi, S. Q. A. and Fraenkel, G., 1979. Synthesis and nuclear magnetic resonance spectra of N-carboethoxy-4-spiro-1,4-dihydropyridines. J. Org. Chem. 44, 2522–2529.

    Article  CAS  Google Scholar 

  23. Geesey, G. G., 1993. Biofilm formation. In: G. Korbin (ed.), A Practical Manual on Microbiologically Influenced Corrosion, Houston, TX, NACE International, pp 11–13.

    Google Scholar 

  24. Geesey, G. G., Lewandowski, Z. and Flemming, H.-C., (Editors), 1994. Biofouling and Biocorrosion in Industrial Water Systems, Boca Raton, FL, Lewis Publishers.

    Google Scholar 

  25. Gevertz, D., Telang, A. J., Voordouw, G. and Jenneman, G. E., 2000. Isolation and characterization of strains CVO and FWKO B, two novel nitrate-reducing, sulfide-oxidizing bacteria isolated from oil field brine. Applied and Environmental Microbiology 66, 2491–2501.

    Article  CAS  Google Scholar 

  26. Gilbert, P. D., Grech, J. M., Talbot, R. E., Veale, M. A. and Hernandez, K. A., 2002. “Tetrakishydroxymethylphosphonium Sulfate (THPS) For Dissolving Iron Sulfides Downhole and Topside — A Study of the Chemistry Influencing Dissolution” Corrosion/2002, Paper No. 030 (Denver, CO: NACE 2002).

    Google Scholar 

  27. Gray, F., 1986. Petroleum Production for the Non-Technical Person, PennWell Books, Tulsa, OK and reference therein. This is an extremely easy-to-read book and is a good resource for non-technical people.

    Google Scholar 

  28. Grobe, K. J. and Stewart, P. S., 2000. “Characterization of Glutaraldehyde Efficacy Against Bacteria Biofilm.” Corrosion/2000, Paper No. 124, (Orlando, FL: NACE 2000).

    Google Scholar 

  29. Grobe, K. J., Zahller, J. and Stewart, P. S., 2002. Role of dose concentration in biocide efficacy against Pseudomonas aeruginosa biofilms. J. Ind. Microbiol. Biotechnol. 29, 10–15.

    Article  CAS  Google Scholar 

  30. Guerrier, L., Royer, J., Grierson, D. S. and Husson, H. P., 1983. Chiral 1,4-dihydropyridine equivalents: a new approach to the asymmetric synthesis of alkaloids. the enantiospecific synthesis of (+)-and (−)-coniine and dihydropinidine. J. Am. Chem. Soc. 105, 7754–7755.

    Article  CAS  Google Scholar 

  31. Harless, M. L., Yuan, M. and Cowan, J. K., 2000. “9,10-Anthraquinone Applications to Control Biogenic Production of Hydrogen Sulfide in the Near Wellbore Formation in Gas Storage Fields.” Corrosion/2000, Paper No. 00121, (Orlando, FL: NACE 2000).

    Google Scholar 

  32. Hellmann, H. and Shumacher, O., 1960. Hydroxymethylphosphines. Angew. Chem. 72, 211.

    Article  CAS  Google Scholar 

  33. Iverson, W. P., 1987. Microbial corrosion of metals. In: A. I. Laskin (ed.), Advances in Applied Microbiology, San Diego, CA, Vol. 32, Academic Press, Inc., pp. 1–36.

    Google Scholar 

  34. Jeffery J.C., Odell B., Stevens N. and Talbot R.E., 2000. Self assembly of a novel water soluble iron(II) macrocyclic phosphine complex from tetrakis(hydroxymethyl)phosphonium sulfate and iron(II) Ammonium sulfate: Single crystal X-ray structure of the complex. Chem. Comm. 101–102.

    Google Scholar 

  35. Johnson, M. D., Harless, M. L., Dickinson, A. L. and Burger, E. D., 1999. “A New Chemical Approach to Mitigate Sulfide Production in Oilfield Water Injection Systems,” SPE 50741, Society of Petroleum Engineers of AIME, 1999.

    Google Scholar 

  36. Katritzky, A. R., Qiu, G., Yang, B. and Steel, P. J., 1998. Efficient routes to chiral 2-substituted and 2,6-disubstituted piperidines. J. Org. Chem. 63, 6699–6703.

    Article  CAS  Google Scholar 

  37. Kawahara, J.-I., Ishikawa, K., Uchimaru, T. and Takaya, H., 1997. Chemical cross-linking by glutaraldehyde between amino groups: its mechanism and effects. Polymer Modification, [Papers presented at the Symposium on Polymer Modification], Orlando, Fla., Aug. 25–29, 1996, pp. 119–131.

    Google Scholar 

  38. Khatib, Z. I. and Salinitro, J. P., 1997. “Reservoir Souring: Analysis of Surveys and Experience in Sour Waterfloods.” SPE Paper No. 3879 5 SPE Annual Technical Conference and Exhibition, San Antonio, TX, October 5th–8th.

    Google Scholar 

  39. Kirby, A. J. and Warren, S. G., 1967. The Organic Chemistry of Phosphorus, Elsevier, New York, pp. 152–153.

    Google Scholar 

  40. Kirley, T. L., 1989. Reduction and fluorescent labeling of cyst(e)ine-containing proteins for subsequent structural analyses. Analytical Biochemistry 180, 231–236.

    Article  CAS  Google Scholar 

  41. Kosower, E. M. and Sorensen, T. S., 1962. The synthesis and properties of some simple 1,4-dihydropyridines. J. Org. Chem. 27, 3764–3771.

    Article  CAS  Google Scholar 

  42. Larsen, J., Sanders, P. F. and Talbot, R. E., 2000. “Experience with the use of Tetrakishydroxymethylphosphonium Sulfate (THPS) for the Control of Downhole Hydrogen Sulfide” Corrosion/2000, Paper No. 123, (Orlando, FL: NACE 2000).

    Google Scholar 

  43. Larsen, J., 2002. “Downhole Nitrate Applications to Control Sulfate Reducing Bacteria Activity and Reservoir Souring.” Corrosion/2002, Paper No. 02025, (Denver, CO: NACE 2002).

    Google Scholar 

  44. Little, B., Wagner, P. and Mansfeld, F., 1991. Microbiologically influenced corrosion of metals and alloys. Int. Mater. Rev. 36, 253–272.

    Article  CAS  Google Scholar 

  45. March, J., 1992. Advanced Organic Chemistry; Reactions, Mechanisms, and Structure. 4th edn., John Wiley & Sons, New York, and references cited therein.

    Google Scholar 

  46. Maxwell, S., Mutch, K., Hellings, G., Badalek, P. and Charlton, P., 2002. “In-Field Biocide Optimisation for Magnus Water Injection System” Corrosion/2002, Paper No. 02031 (Denver, CO: NACE 2002).

    Google Scholar 

  47. McCoy, W. F., 1997. 1997 Education seminar of legionella control. CTI Journal 18, 70–93.

    Google Scholar 

  48. McElhiney, J. E. and Davis, R. A., 2002. “Desulfated Seawater and its Impact on t-SRB Activity: An Alternative Souring Control Methodology.” Corrosion/2002, Paper No. 02028, (Denver, CO: NACE 2002).

    Google Scholar 

  49. Merianos, J. J., 1991. Quaternary ammonium antimicrobial compounds. In: S. S. Block, Disinfection, Sterilization, and Preservation, 4th edn., Lea & Febiger, Philadelphia, pp. 225–255, and references cited therein.

    Google Scholar 

  50. NACE Internationl, 1990. Microbiologically Influenced Corrosion and Biofouling in Oilfield Equipment, TPC3 Publication, National Association of Corrosion Engineers, Houston, TX.

    Google Scholar 

  51. Nasr-El-Din, H. A., Rosser, H. R. and Al-Jawfi, M. S., 2000. “Formation Damage Resulting from Biocide/Corrosion Inhibitor Squeeze Treatments,” SPE paper 58803 presented at the 2000 SPE International Symposium on Formation Damage held in Layette, LA 23–24 February, 2000.

    Google Scholar 

  52. Nasr-El-Din H. A. and Al-Humaidan A. Y., 2001. “Iron Sulfide Scale: Formation, Removal and Prevention”, SPE Paper No 68315.

    Google Scholar 

  53. Nickel, J. C., Grant, S. K. and Costerton, J. W., 1985a. Catheter-associated bacteriuria: An experimental study. Urology 26, 369–375.

    Article  CAS  Google Scholar 

  54. Nickel, J. C., Ruseka, I., Wright, J. B. and Costerton, J. W., 1985b, Tobramycin resistance of Pseudomonas aeruginosa cells growing as a biofilm on urinary catheter material. Antimicrob. Agents Chemother., 27, 619–624.

    Article  CAS  Google Scholar 

  55. Nemati, M., Jenneman, G. E. and Voordouw, G., 2001a. Impact of nitrate-mediated microbial control of souring in oil reservoirs on the extent of corrosion. Biotechnology Progress 17, 852–859.

    Article  CAS  Google Scholar 

  56. Nemati, M., Jenneman, G. E. and Voordouw, G., 2001b. Mechanistic study of microbial control of hydrogen sulfide production in oil reservoirs. Biotechnology and Bioengineering 74, 424–434.

    Article  CAS  Google Scholar 

  57. Nemati, M., Mazutinec, T. J., Jenneman, G. E., Voordouw, G., 2001c. Control of biogenic H2S production with nitrite and molybdate. Journal of Industrial Microbiology & Biotechnology 26, 350–355.

    Article  CAS  Google Scholar 

  58. Overman, L. E. and O’Connor, E. M., 1976. Nucleophilic cleavage of the sulfur-sulfur bond by phosphorus nucleophiles. IV. Kinetic study of the reduction of alkyl disulfides with triphenylphosphine and water. J. Am. Chem. Soc. 98, 771–775.

    Article  CAS  Google Scholar 

  59. Parker, A. J. and Kharasch, N., 1959. The scission of the sulfur-sulfur bond. Chem. Rev. 59, 583–628.

    Article  CAS  Google Scholar 

  60. Patton, C. C., 1991. Applied Water Technology, Campbell Petroleum Series, Second Printing, Norman, OK, and references therein.

    Google Scholar 

  61. Petrocci, A. N., Green, H. A., Merianos, J. J. and Like, B., 1974. The properties of dialkyl dimethyl quaternary ammonium compounds. C. S. M. A. Proceedings of the 60th Mid Year Meeting May 1974, pp 87–89.

    Google Scholar 

  62. Postgate, J. R., 1984. The Sulphate-Reducing Bacteria, 2nd edn., Cambridge Press, London.

    Google Scholar 

  63. Ruegg, U. T. and Rudinger, J., 1977. Reductive cleavage of cystine disulfides with tributylphosphine. Methods in Enzymology 47, 111–116.

    Article  CAS  Google Scholar 

  64. Shepherd, J. A., Waigh, R. D. and Gilbert, P., 1988. Antibacterial action of 2-bromo-2-nitropropane-1,3-diol (Bronopol). Antimicrob. Agents Chemother. 32, 1693–1698.

    Article  CAS  Google Scholar 

  65. Stettar, K. O., 1993. Hyperthermophilic archaea are thriving in deep north sea and alaskan oil reservoirs. Nature 365, 743.

    Article  Google Scholar 

  66. Stewart, P., McFeters, G. and Huang, C., 2000. Biofilm control by antimicrobial agents. In: J. Bryers (ed.), Biofilms II: Process Analysis and Applications, Farmington, Connecticut, University of Connecticut Health Center, pp. 373–405.

    Google Scholar 

  67. Sturman, P. J., Goeres, D. M. and Winters, M. A., 1999. “Control of Hydrogen Sulfide in Oil and Gas Wells With Nitrite Injection.” SPE Paper No. 56772, SPE Annual Technical Conference and Exhibition, Houston, TX, October 3rd–6th.

    Google Scholar 

  68. Tatnall, R. E., 1993. Introduction. In: G. Korbin (ed.) A Practical Manual on Microbiologically Influenced Corrosion, Houston, TX, NACE International, pp. 1–9.

    Google Scholar 

  69. Thorstenson, T., Bodtker, G., Sunde, E. and Beeder, J., 2002. “Biocide Replacement by Nitrate in Sea Water Injection Systems.” Corrosion/2002, Paper No. 02033 (Denver, CO; NACE 2002).

    Google Scholar 

  70. Trippett, S., 1961. The rearrangement of 1-hydroxyalkylphosphines to alkylphosphine oxides. J. Chem. Soc. 2813.

    Google Scholar 

  71. Walker, J. F., 1975. Formaldehyde. 3rd edn., E. Robert Florida, Krieger Publishing Company Malabar, page 247.

    Google Scholar 

  72. Walker M. L., Dill W. R., Besler M. R. and McFatridge D. G., 1991. Iron control in west texas sour-gas wells provides sustained production increases. Journal of Petroleum Technology May 1991, pp. 603–607.

    Google Scholar 

  73. Xu, K. D., McFeters, G. A. and Stewart, P. S., 2000. Biofilm resistance to antimicrobial agents. Microbiology 146, 547–549.

    Article  CAS  Google Scholar 

  74. Yue, C., Gauthier, I., Royer, J. and Husson, H-P., 1996. Concise and stereoselective syntheses of the eight natural ant defense alkaloids (+)-Tetraponerine-1 to (+)-Tetraponerine-8 according to the CN(R,S) strategy. J. Org. Chem. 61, 4949–4954.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author would like to thank the following people for helpful discussions; Mr. Gary Jenneman of Conoco Phillips, Professor Gerrit Voordouw of the University of Calgary, and Dr. Talseef Salma of BakerPetrolite, Mr. Jack Hanks of The Dow Chemical Company and the management of The Dow Chemical Company for permission to publish this chapter.

Authors

Editor information

Wilfried Paulus

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Kluwer Academic Publishers

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

McIlwaine, D.B. (2004). Oilfield application for biocides. In: Paulus, W. (eds) Directory of Microbicides for the Protection of Materials. Springer, Dordrecht. https://doi.org/10.1007/1-4020-2818-0_10

Download citation

Publish with us

Policies and ethics