Skip to main content

Brain Oxidative Stress from a Phospholipid Perspective

  • Reference work entry
Handbook of Neurochemistry and Molecular Neurobiology

Abstract:

Oxygen-derived reactive species such as oxyl, peroxyl, and hydroxyl radicals are initiators of a damaging cascade of events known as oxidative stress (OS) whereby cellular macromolecules are attacked and cell damage may occur. Brain tissue is particularly vulnerable to damage, because on the one hand it has a high consumption of oxygen and contains ample radical-sensitive targets while on the other hand it is less endowed with a robust and diverse enzymatic and nonenzymatic antioxidant arsenal. Polyunsaturated fatty acids which are almost exclusively and ubiquitously found in membrane phospholipids (PL) are major radical-sensitive targets. As a result of the action of hydroxyl radicals, lipid peroxidation takes place and lipid hydroperoxides are generated. While these perturb membrane structure/function and can be deleterious to cells, they may also take part in redox reactions which may beneficially amend the harmful consequences of the injury. That may well depend on the topology of the PUFAs in the bilayer as well as on replenishment mechanisms to restore membrane integrity. Stress metabolites derived from docosahexaenoic acid (DHA, 22:6n-3) may act as neuroprotectants after being released from PL. On the other hand, lipid-bound DHA and the vinyl ether bonds of ethanol amine PLs constitute a large reservoir of endogenous metabolites which could also provide neuroprotection. In the developing brain the nutritional supply of DHA is crucial since the antioxidant cellular machinery is less developed. In the aging brain or in neurodegenerative disorders, the pronounced depletion of DHA-enriched PL may indicate a persistent oxidative catabolic degradation, unmatched by a proper reacylation of the PUFAs. Unravelling the lipidomic vocabulary of molecular species which contain DHA or are generated from DHA during development, aging, and trauma should pave the way for treating OS-related diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AA:

arachidonic acid (20:4n-6)

AD:

Alzheimer’s disease

amino-PL:

amino-phospholipids

APT:

aminophospholipid translocase

CL:

cardiolipin

COX:

cyclooxygenases

CPG:

choline phosphoglyceride

dEPG:

N,N-dimethyl-EPG

DHA:

docosahexaenoic acid (22:6n-3)

EPA:

eicosapentaenoic acid (20:5n-3)

EPG:

ethanolamine phosphoglyceride

FA:

fatty acids

4-HHE:

4-hydroxyhexenal

4-HNE:

4-hydroxy-2-nonenal

LMWA:

low molecular weight antioxidants

LOX:

lipoxygenases

LPO:

lipid peroxidation

MDA:

malondialdehyde

NO:

nitric oxide

OS:

oxidative stress

pEPG:

plasmalogen or 1-alkenyl 2-acyl EPG

PL:

phospholipid

PLA2 :

phospholipase A2

PLSCR1:

phospholipid scramblase 1

PUFA:

polyunsaturated fatty acids

ROS:

reactive oxygen

SPG:

serine phosphoglyceride

References

  • Back SA, Han BH, Luo NL, Chricton CA, Xanthoudakis S, et al. 2002. Selective vulnerability of late oligodendrocyte progenitors to hypoxia-ischemia. J Neurosci 22: 455–463.

    PubMed  CAS  Google Scholar 

  • Bacot S, Bernoud-Hubac N, Chantegrel B, Deshayes C, Doutheau A, et al. 2007. Evidence for in situ ethanolamine phospholipid adducts with hydroxy-alkenals. J Lipid Res 48: 816–825.

    PubMed  CAS  Google Scholar 

  • Bader Lange ML, Cenini G, Piroddi M, Abdul HM, Sultana R, et al. 2008. Loss of phospholipid asymmetry and elevated brain apoptotic protein levels in subjects with amnestic mild cognitive impairment and Alzheimer disease. Neurobiol Dis 29: 456–464.

    PubMed  CAS  Google Scholar 

  • Balasubramanian K, Schroit AJ. 2003. Aminophospholipid asymmetry: A matter of life and death. Annu Rev Physiol 65: 701–734.

    PubMed  CAS  Google Scholar 

  • Barichella et al. 2008. Chapter 5 in this series.

    Google Scholar 

  • Bayir H, Tyurin VA, Tyurina YY, Viner R, Ritov V, et al. 2007. Selective early cardiolipin peroxidation after traumatic brain injury: An oxidative lipidomics analysis. Ann Neurol 62: 154–169.

    PubMed  CAS  Google Scholar 

  • Bazan NG. 2007. Omega-3 fatty acids, pro-inflammatory signaling and neuroprotection. Curr Opin Clin Nutr Metab Care 10: 136–141.

    PubMed  CAS  Google Scholar 

  • Bentinger M, Brismar K, Dallner G. 2007. The antioxidant role of coenzyme Q. Mitochondrion Suppl: S41–S50.

    Google Scholar 

  • Berger R, Garnier Y. 2000. Perinatal brain injury. J Perinat Med 28: 261–285.

    PubMed  CAS  Google Scholar 

  • Bertoni-Freddari C, Fattoretti P, Paoloni R, Caselli U, Galeazzi L, et al. 1996. Synaptic structural dynamics and aging. Gerontology 42: 170–180.

    PubMed  CAS  Google Scholar 

  • Binder H, Gawrisch K. 2001. Dehydration induces lateral expansion of polyunsaturated 18:0–22:6 phosphatidylcholine in a new lamellar phase. Biophys J 81: 969–982.

    PubMed  CAS  Google Scholar 

  • Block ML, Zecca L, Hong JS. 2007. Microglia-mediated neurotoxicity: Uncovering the molecular mechanisms. Nat Rev Neurosci 8: 57–69.

    PubMed  CAS  Google Scholar 

  • Boksa P. 2004. Animal models of obstetric complications in relation to schizophrenia. Brain Res Rev 45: 1–17.

    PubMed  Google Scholar 

  • Brand A, Yavin E. 2001. Early ethanolamine phospholipid translocation marks stress-induced apoptotic cell death in oligodendroglial cells. J Neurochem 78: 1208–1218.

    PubMed  CAS  Google Scholar 

  • Brand A, Yavin E. 2005. Translocation of ethanolamine phosphoglyceride is required for initiation of apoptotic death in OLN-93 oligodendroglial cells. Neurochem Res 30: 1257–1267.

    PubMed  CAS  Google Scholar 

  • Brand A, Gil S, Seger R, Yavin E. 2001. Lipid constituents in oligodendroglial cells alter susceptibility to H2O2-induced apoptotic cell death via ERK activation. J Neurochem 76: 910–918.

    PubMed  CAS  Google Scholar 

  • Brand A, Gil S, Yavin E. 2000. N-methyl bases of ethanolamine prevent apoptotic cell death induced by oxidative stress in cells of oligodendroglia origin. J Neurochem 74: 1596–1604.

    PubMed  CAS  Google Scholar 

  • Bretscher MS. 1971. The proteins of erythrocyte membranes: Where are they? Biochem J 122: 40–41.

    Google Scholar 

  • Buettner GR. 1993. The pecking order of free radicals and antioxidants: Lipid peroxidation, alpha-tocopherol, and ascorbate. Arch Biochem Biophys 300: 535–543.

    PubMed  CAS  Google Scholar 

  • Burke C, Sinclair K, Cowin G, Rose S, Pat B, et al. 2006. Intrauterine growth restriction due to uteroplacental vascular insufficiency leads to increased hypoxia-induced cerebral apoptosis in newborn piglets. Brain Res 1098: 19–25.

    PubMed  CAS  Google Scholar 

  • Buss RR, Oppenheim RW. 2004. Role of programmed cell death in normal neuronal development and function. Anat Sci Int 79: 191–197.

    PubMed  Google Scholar 

  • Butterfield DA, Howard BJ, LaFontaine MA. 2001. Brain oxidative stress in animal models of accelerated aging and the age-related neurodegenerative disorders, Alzheimer's disease and Huntington's disease. Curr Med Chem 7: 815–828.

    Google Scholar 

  • Calon F, Cole G. 2007. Neuroprotective action of omega-3 polyunsaturated fatty acids against neurodegenerative diseases: Evidence from animal studies. Prostaglandins Leukot Essent Fatty Acids 77: 287–293.

    PubMed  CAS  Google Scholar 

  • Castegna A, Lauderback CM, Mohmmad-Abdul H, Butterfield DA. 2004. Modulation of phospholipid asymmetry in synaptosomal membranes by the lipid peroxidation products, 4-hydroxynonenal and acrolein: Implications for Alzheimer's disease. Brain Res 1004: 193–197.

    PubMed  CAS  Google Scholar 

  • Cheng H, Mancuso DJ, Jiang X, Guan S, Yang J, et al. 2008. Shotgun lipidomics reveals the temporally dependent, highly diversified cardiolipin profile in the mammalian brain: Temporally coordinated postnatal diversification of cardiolipin molecular species with neuronal remodeling. Biochemistry 47: 5869–5880.

    PubMed  CAS  Google Scholar 

  • Clandinin MT, Chappell JE, Leong S, Heim T, Swyer PR, et al. 1980. Intrauterine fatty acid accretion rates in human brain: Implications for fatty acid requirements. Early Hum Dev 4: 121–129.

    PubMed  CAS  Google Scholar 

  • Coyle JT, Puttfarcken P. 1993. Oxidative stress, glutamate, and neurodegenerative disorders. Science 262(5134): 689–695.

    PubMed  CAS  Google Scholar 

  • Daleke DL. 2003. Regulation of transbilayer plasma membrane phospholipid asymmetry. J Lipid Res 44: 233–242.

    PubMed  CAS  Google Scholar 

  • Das P, Estephan R, Banerjee P. 2003. Apoptosis is associated with an inhibition of aminophospholipid translocase (APTL) in CNS-derived HN2–5 and HOG cells and phosphatidylserine is a recognition molecule in microglial uptake of the apoptotic HN2–5 cells. Life Sci 72: 2617–2627.

    PubMed  CAS  Google Scholar 

  • Devaux PF, López-Montero I, Bryde S. 2006. Proteins involved in lipid translocation in eukaryotic cells. Chem Phys Lipids 141: 119–132.

    PubMed  CAS  Google Scholar 

  • Dhanasekaran M, Ren J. 2005. The emerging role of coenzyme Q-10 in aging, neurodegeneration, cardiovascular disease, cancer and diabetes mellitus. Curr Neurovasc Res 2: 447–459.

    PubMed  CAS  Google Scholar 

  • Diagne A, Fauvel J, Record M, Chap H, Douste-Blazy L. 1984. Studies on ether phospholipids: Part II. Comparative composition of various tissues from human, rat and guinea pig. Biochim Biophys Acta 793: 221–231.

    PubMed  CAS  Google Scholar 

  • Dobbing J, Sands J. 1979. Comparative aspects of the brain growth spurt. Early Hum Dev 3: 79–83.

    PubMed  CAS  Google Scholar 

  • Dotan Y, Lichtenberg D, Pinchuk I. 2004. Lipid peroxidation cannot be used as a universal criterion of oxidative stress. Prog Lipid Res 43: 200–227.

    PubMed  CAS  Google Scholar 

  • Dringen R, Hirrlinger J. 2003. Glutathione pathways in the brain. Biol Chem 384: 505–516.

    PubMed  CAS  Google Scholar 

  • Dringen R, Pawlowski PG, Hirrlinger J. 2005. Peroxide detoxification by brain cells. J Neurosci Res 79: 157–165.

    PubMed  CAS  Google Scholar 

  • El-Agamey A, Lowe GM, McGarvey DJ, Mortensen A, Phillip DM, et al. 2004. Carotenoid radical chemistry and antioxidant/pro-oxidant properties. Arch Biochem Biophys 430: 37–48.

    PubMed  CAS  Google Scholar 

  • Emoto K, Umeda M. 2001. Membrane lipid control of cytokinesis. Cell Struct Funct 26: 659–665.

    PubMed  CAS  Google Scholar 

  • Engelmann B. 2004. Plasmalogens: Targets for oxidants and major lipophilic antioxidants. Biochem Soc Trans 32: 147–150.

    PubMed  CAS  Google Scholar 

  • Esterbauer H, Schaur RJ, Zollner H. 1991. Chemistry and biochemistry of 4-hydroxynonenal, malondialdehyde and related aldehydes. Free Radical Biol Med 11: 81–128.

    CAS  Google Scholar 

  • Esterbauer H, Striegl G, Puhl H, Rotheneder M. 1989. Continuous monitoring of in vitro oxidation of human low density lipoprotein. Free Radic Res Commun 6: 67–75.

    PubMed  CAS  Google Scholar 

  • Fanani ML, Topham MK, Walsh JP, Epand RM. 2004. Lipid modulation of the activity of diacylglycerol kinase alpha- and zeta-isoforms: Activation by phosphatidylethanolamine and cholesterol. Biochemistry 43: 14767–14777.

    PubMed  CAS  Google Scholar 

  • Farooqui AA, Horrocks LA. 2001. Plasmalogens, phospholipase A2, and docosahexaenoic acid turnover in brain tissue. J Mol Neurosci 16: 263–272.

    CAS  Google Scholar 

  • Farooqui AA, Horrocks LA. 2006. Phospholipase A2-generated lipid mediators in the brain: The good, the bad, and the ugly. Neuroscientist 12: 245–260.

    PubMed  CAS  Google Scholar 

  • Farooqui AA, Horrocks LA, Farooqui T. 2000. Deacylation and reacylation of neural membrane glycerophospholipids. J Mol Neurosci 14: 123–135.

    PubMed  CAS  Google Scholar 

  • Farooqui AA, Ong W-Y, Horrocks LA. 2003. Plasmalogens, docosahexaenoic acid and neurological disorders. Peroxisomal Disorders and Regulation of Genes, Vol. 544. Roels F, editor. Kluwer Academic Publishers; New York: pp. 335–354.

    Google Scholar 

  • Fessel JP, Jackson Roberts L. 2005. Isofurans: Novel products of lipid peroxidation that define the occurrence of oxidant injury in settings of elevated oxygen tension. Antioxid Redox Signal 7: 202–209.

    PubMed  CAS  Google Scholar 

  • Fewell JE. 2005. Protective responses of the newborn to hypoxia. Respir Physiol Neurobiol 149: 243–255.

    PubMed  CAS  Google Scholar 

  • Franchi AM, Chaud M, Rettori V, Suburo A, McCann SM, et al. 1994. Role of nitric oxide in eicosanoid synthesis and uterine motility in estrogen-treated rat uteri. Proc Natl Acad Sci USA 91: 539–543.

    PubMed  CAS  Google Scholar 

  • Gaeta A, Hider RC. 2005. The crucial role of metal ions in neurodegeneration: The basis for a promising therapeutic strategy. Br J Pharmacol 146: 1041–1059.

    PubMed  CAS  Google Scholar 

  • Galpern WR, Cudkowicz ME. 2007. Coenzyme Q treatment of neurodegenerative diseases of aging. Mitochondrion 7: S146–153.

    PubMed  CAS  Google Scholar 

  • Gao L, Wang J, Sekhar KR, Yin H, Yared NF, et al. 2007. Novel n-3 fatty acid oxidation products activate Nrf2 by destabilizing the association between Keap1 and Cullin3. J Biol Chem 282: 2529–2537.

    PubMed  CAS  Google Scholar 

  • Girotti AW. 1998. Lipid hydroperoxide generation, turnover, and effector action in biological systems. J Lipid Res 39: 1529–1542.

    PubMed  CAS  Google Scholar 

  • Glozman S, Green P, Yavin E. 1998. Intraamniotic ethyl docosahexaenoate administration protects fetal rat brain from ischemic stress. J Neurochem 70: 2484–2491.

    PubMed  CAS  Google Scholar 

  • Gonzalvez F, Gottlieb E. 2007. Cardiolipin: Setting the beat of apoptosis. Apoptosis 12: 877–885.

    PubMed  CAS  Google Scholar 

  • Gordon LI, Weiss D, Prachand S, Weitzman SA. 1991. Scavenging of superoxide anion by phosphorylethanolamine studies in human neutrophils and in a cell free system. Free Radic Res Commun 15: 65–71.

    PubMed  CAS  Google Scholar 

  • Green P, Glozman S, Yavin E. 2001a. Ethyl docosahexaenoate-associated decrease in fetal brain lipid peroxide production is mediated by activation of prostanoid and nitric oxide pathways. Biochim Biophys Acta 1531: 156–164.

    PubMed  CAS  Google Scholar 

  • Green P, Glozman S, Weiner L, Yavin E. 2001b. Enhanced free radical scavenging and decreased lipid peroxidation in the rat fetal brain after treatment with ethyl docosahexaenoate. Biochim Biophys Acta 1532: 203–212.

    PubMed  CAS  Google Scholar 

  • Grossman A, Wendel A. 1983. Non-reactivity of the selenoenzyme glutathione peroxidase with enzymatically hydroperoxidized phospholipids. Eur J Biochem 135: 549–552.

    Google Scholar 

  • Guan Z, Wang Y, Cairns NJ, Lantos PL, Dallner G, et al. 1999. Decrease and structural modifications of phosphatidylethanolamine plasmalogen in the brain with Alzheimer disease. J Neuropathol Exp Neurol 58: 740–747.

    PubMed  CAS  Google Scholar 

  • Guichardant M, Bacot S, Molière P, Lagarde M. 2006. Hydroxy-alkenals from the peroxidation of n-3 and n-6 fatty acids and urinary metabolites. Prostaglandins Leukot Essent Fatty Acids 75: 179–182.

    PubMed  CAS  Google Scholar 

  • Hahnel D, Beyer K, Engelmann B. 1999. Inhibition of peroxyl radical-mediated lipid oxidation by plasmalogen phospholipids and alpha-tocopherol. Free Radic Biol Med 27: 1087–1094.

    PubMed  CAS  Google Scholar 

  • Halliwell B. 2001. Role of free radicals in the neurodegenerative diseases: Therapeutic implications for antioxidant treatment. Drugs Aging 18: 685–716.

    PubMed  CAS  Google Scholar 

  • Halliwell B, Gutteridge J. 2007. Free Radicals in Biology and Medicine. Oxford University Press. Oxford, UK.

    Google Scholar 

  • Halliwell B, Whiteman M. 2004. Measuring reactive species and oxidative damage in vivo and in cell culture: How should you do it and what do the results mean? British J Pharmacol 142: 231–255.

    CAS  Google Scholar 

  • Hanshaw RG, Smith BD. 2005. New reagents for phosphatidylserine recognition and detection of apoptosis. Bioorg Med Chem 13: 5035–5042.

    PubMed  CAS  Google Scholar 

  • Heidenreich KA. 2003. Molecular mechanisms of neuronal cell death. Ann N Y Acad Sci 991: 237–250.

    PubMed  CAS  Google Scholar 

  • Hengst U, Albrecht H, Hess D, Monard D. 2001. The phosphatidylethanolamine-binding protein is the prototype of a novel family of serine protease inhibitors. J Biol Chem 276: 535–540.

    PubMed  CAS  Google Scholar 

  • Holmquist L, Stuchbury G, Berbaum K, Muscat S, Young S, et al. 2007. Lipoic acid as a novel treatment for Alzheimer's disease and related dementias. Pharmacol Ther 113: 154–164.

    PubMed  CAS  Google Scholar 

  • Imai H and Nakagawa Y. 2003. Biological significance of phospholipid hydroperoxide glutathione peroxidase (phgpx, gpx4) in mammalian cells. Free Radic Biol Med 34: 145–169.

    PubMed  CAS  Google Scholar 

  • d'Ischia M, Palumbo A, Buzzo F. 2000. Interactions of nitric oxide with lipid peroxidation products under aerobic conditions: Inhibitory effects on the formation of malondialdehyde and related thiobarbituric acid-reactive substances. Nitric Oxide: Biology and Chemistry 4: 4–14.

    Google Scholar 

  • James AM, Smith RA, Murphy MP. 2004. Antioxidant and prooxidant properties of mitochondrial Coenzyme Q. Arch Biochem Biophys 423: 47–56.

    PubMed  CAS  Google Scholar 

  • Kagan VE, Tyurin VA, Jiang J, Tyurina YY, Ritov VB, et al. 2005. Cytochrome c acts as a cardiolipin oxygenase required for release of proapoptotic factors. Nat Chem Biol 1: 223–232.

    PubMed  CAS  Google Scholar 

  • Keller JN, Mattson MP. 1998. Roles of lipid peroxidation in modulation of cellular signaling pathways, cell dysfunction, and death in the nervous system. Rev Neurosci 9: 105–116.

    PubMed  CAS  Google Scholar 

  • Khwaja O, Volpe JJ. 2008. Pathogenesis of cerebral white matter injury of prematurity. Arch Dis Child Fetal Neonatal Ed 93: F153–161.

    PubMed  CAS  Google Scholar 

  • Kikuchi K, Sakai K, Suzuki T, Takama K. 1999. Fatty acid composition of choline and ethanolamine glycerophospholipid subclasses in heart tissue of mammals and migratory and demersal fish. Comp Biochem Physiol B Biochem Mol Biol 124: 1–6.

    PubMed  CAS  Google Scholar 

  • Kimelberg HK. 2005. Astrocytic swelling in cerebral ischemia as a possible cause of injury and target for therapy. Glia 50: 389–397.

    PubMed  Google Scholar 

  • Kitajka K, Sinclair AJ, Weisinger RS, Weisinger HS, Mathai M, et al. 2004. Effects of dietary omega-3 polyunsaturated fatty acids on brain gene expression. Proc Natl Acad Sci USA 101: 10 931–10 936.

    CAS  Google Scholar 

  • Kitani Minami Maruyama Kanai Ivy et al. 2003. Critical Reviews of Oxidative Stress and Aging: Advances in Basic Science, Diagnostic and Intervention. Singapore: World Scientific Publishing.

    Google Scholar 

  • Kruman I, Bruce-Keller AJ, Bredesen D, Waeg G, Mattson MP. 1997. Evidence that 4 hydroxynonenal mediates oxidative stress-induced neuronal apoptosis. J Neurosci 17: 5089–5100.

    PubMed  CAS  Google Scholar 

  • Kubo K, Saito M, Tadokoro T, Maekawa A. 2000. Preferential incorporation of docosahexaenoic acid into nonphosphorus lipids and phosphatidylethanolamine protects rats from dietary DHA-stimulated lipid peroxidation. J Nutr 130: 1749–1759.

    PubMed  CAS  Google Scholar 

  • Lafon-Cazal M, Pietri S, Culcasi M, Bockaert J. 1993. NMDA-dependent superoxide production and neurotoxicity. Nature 364: 535–537.

    PubMed  CAS  Google Scholar 

  • Lehtinen MK, Bonni A. 2006. Modeling oxidative stress in the central nervous system. Curr Mol Med 6: 871–881.

    PubMed  CAS  Google Scholar 

  • Leonarduzzi G, Robbesyn F, Poli G. 2004. Signaling kinases modulated by 4-hydroxynonenal. Free Radic Biol Med 37: 1694–1702.

    PubMed  CAS  Google Scholar 

  • Leray C, Cazenave J-P, Gachet C. 2002. Platelet phospholipids are differentially protected against oxidative degradation by plasmalogens. Lipids 37: 285–290.

    PubMed  CAS  Google Scholar 

  • Li J, Calkins MJ, Johnson DA, Johnson JA. 2007. Role of Nrf2-dependent ARE-driven antioxidant pathway in neuroprotection. Methods Mol Biol 399: 67–78.

    PubMed  CAS  Google Scholar 

  • Long EK, Murphy TC, Leiphon LJ, Watt J, Morrow JD, et al. 2008. Trans-4-hydroxy-2-hexenal is a neurotoxic product of docosahexaenoic (22:6; n-3) acid oxidation. J Neurochem 105: 714–724.

    PubMed  CAS  Google Scholar 

  • Lukiw WJ, Cui JG, Marcheselli VL, Bodker M, Botkjaer A, et al. 2005. A role for docosahexaenoic acid-derived neuroprotectin D1 in neural cell survival and Alzheimer disease. J Clin Invest 115: 2774–2783.

    PubMed  CAS  Google Scholar 

  • Manev H, Uz T, Sugaya K, Qu TY. 2000. Putative role of neuronal 5-lipoxygenase in an aging brain. FASEB J 14: 1464–1469.

    PubMed  CAS  Google Scholar 

  • Mariani E, Polidori MC, Cherubini A, Mecocci P. 2005. Oxidative stress in brain aging, neurodegenerative and vascular diseases: An overview. J Chromatogr B Analyt Technol Biomed Life Sci 827: 65–75.

    PubMed  CAS  Google Scholar 

  • Martinez M. 1989. Polyunsaturated fatty acid changes suggesting a new enzymatic defect in Zellweger syndrome. Lipids 24: 261–265.

    PubMed  CAS  Google Scholar 

  • Mattson MP. 2004. Metal-catalyzed disruption of membrane protein and lipid signaling in the pathogenesis of neurodegenerative disorders. Ann N Y Acad Sci 1012: 37–50.

    PubMed  CAS  Google Scholar 

  • Mazza M, Pomponi M, Janiri L, Bria P, Mazza S. 2007. Omega-3 fatty acids and antioxidants in neurological and psychiatric diseases: An overview. Progr Neuro-Psychopharm Biol Psych 31: 12–26.

    CAS  Google Scholar 

  • McNamara RK, Carlson SE. 2006. Role of omega-3 fatty acids in brain development and function: Potential implications for the pathogenesis and prevention of psychopathology. Prostaglandins Leukot Essent Fatty Acids 75: 329–349.

    PubMed  CAS  Google Scholar 

  • Milne GL, Yin H, Morrow JD. 2008. Human biochemistry of the isoprostane pathway. J Biol Chem 283: 15533–15537.

    PubMed  CAS  Google Scholar 

  • Montuschi P, Barnes P, Roberts LJ 2nd. 2007. Insights into oxidative stress: The isoprostanes. Curr Med Chem 14: 703–717.

    PubMed  CAS  Google Scholar 

  • Morris MC, Evans DA, Bienias JL, Tangney CC, Bennett DA, et al. 2003. Consumption of fish and n-3 fatty acids and risk of incident Alzheimer disease. Arch Neurol 60: 940–946.

    PubMed  Google Scholar 

  • Morrow JD, Harris TM, Roberts LJ 2nd. 1990. Noncyclooxygenase oxidative formation of a series of novel prostaglandins: Analytical ramifications for measurement of eicosanoids. Anal Biochem 184: 1–10.

    PubMed  CAS  Google Scholar 

  • Morrow JD, Awad JA, Boss HJ, Blair IA, Roberts LJ 2nd. 1992. Non-cyclooxygenase-derived prostanoids (F2-isoprostanes) are formed in situ on phospholipids. Proc Natl Acad Sci USA 89: 10721–10725.

    PubMed  CAS  Google Scholar 

  • Mukherjee PK, Chawla A, Loayza MS, Bazan NG. 2007. Docosanoids are multifunctional regulators of neural cell integrity and fate: Significance in aging and disease. Prostaglandins Leukot Essent Fatty Acids 77: 233–238.

    PubMed  CAS  Google Scholar 

  • Neely MD, Sidell KR, Graham DG, Montine TJ. 1999. The lipid peroxidation product 4-hydroxynonenal inhibits neurite outgrowth, disrupts neuronal microtubules, and modifies cellular tubulin. J Neurochem 72: 2323–2333.

    PubMed  CAS  Google Scholar 

  • Odabaei G, Chatterjee D, Jazirehi AR, Goodglick L, Yeung K, et al. 2004. Raf-1 kinase inhibitor protein: Structure, function, regulation of cell signaling, and pivotal role in apoptosis. Adv Cancer Res 91: 169–200.

    PubMed  CAS  Google Scholar 

  • Odetti P, Angelini G, Dapino D, Zaccheo D, Garibaldi S, et al. 1998. Early glycoxidation damage in brains from Down's syndrome. Biochem Biophys Res Commun 43: 849–851.

    Google Scholar 

  • Orrenius S, Gogvadze V, Zhivotovsky B. 2007. Mitochondrial oxidative stress: Implications for cell death. Annu Rev Pharmacol Toxicol 47: 143–183.

    PubMed  CAS  Google Scholar 

  • Orth M, Schapira AH. 2001. Mitochondria and degenerative disorders. Am J Med Genet 106: 27–36.

    PubMed  CAS  Google Scholar 

  • Packer L, Tritschler HJ, Wessel K. 1997. Neuroprotection by the metabolic antioxidant alpha-lipoic acid. Free Radic Biol Med 22: 359–378.

    PubMed  CAS  Google Scholar 

  • Packer L, Witt EH, Tritschler HJ. 1995. Alpha-lipoic acid as a biological antioxidant. Free Radic Biol Med 19: 227–250.

    PubMed  CAS  Google Scholar 

  • Pappolla MA, Chyan Y-J, Omar RA, Hsiao K, Perry G, et al. 1998. Evidence of oxidative stress and in vivo neurotoxicity of β-amyloid in a transgenic mouse model of Alzheimer's disease. Am J Pathol 152: 871–877.

    PubMed  CAS  Google Scholar 

  • Perlman JM. 2006. Intervention strategies for neonatal hypoxic-ischemic cerebral injury. Clin Ther 28: 1353–1365.

    PubMed  CAS  Google Scholar 

  • Phillis JW, Horrocks LA, Farooqui AA. 2006. Cyclooxygenases, lipoxygenases, and epoxygenases in CNS: Their role and involvement in neurological disorders. Brain Res Rev 52: 201–243.

    PubMed  CAS  Google Scholar 

  • Prasad MR, Lovell MA, Yatin M, Dhillon H, Markesbery WR. 1998. Regional membrane phospholipid alterations in Alzheimer's disease. Neurochem Res 23: 81–88.

    PubMed  CAS  Google Scholar 

  • Rami A, Sims J, Botez G, Winckler J. 2003. Spatial resolution of phospholipid scramblase 1 (PLSCR1), caspase-3 activation and DNA-fragmentation in the human hippocampus after cerebral ischemia. Neurochem Int 43: 79–87.

    PubMed  CAS  Google Scholar 

  • Rao AV, Ray MR, Rao LG. 2006. lycopene. Adv Food Nutr Res 51: 99–164.

    PubMed  CAS  Google Scholar 

  • Reynolds A, Laurie C, Mosley RL, Gendelman HE. 2007. Oxidative stress and the pathogenesis of neurodegenerative disorders. Int Rev Neurobiol 82: 297–325.

    PubMed  CAS  Google Scholar 

  • Roberts LJ 2nd, Montine TJ, Markesbery WR, Tapper AR, Hardy P, et al. 1998. Formation of isoprostane-like compounds (neuroprostanes) in vivo from docosahexaenoic acid. J Biol Chem 273: 13605–13612.

    PubMed  CAS  Google Scholar 

  • Rothman JE, Lenard J. 1977. Membrane asymmetry. Science 195: 743–753.

    PubMed  CAS  Google Scholar 

  • Rubbo H, Radi R, Trujillo M, Telleri R, Kalyanaraman B, et al. 1994. A Nitric oxide regulation of superoxide and peroxynitrite-dependent lipid peroxidation. J Biol Chem 269: 26066–26075.

    PubMed  CAS  Google Scholar 

  • Savaskan NE, Borchert A, Bräuer AU, Kuhn H. 2007b. Role for glutathione peroxidase-4 in brain development and neuronal apoptosis: Specific induction of enzyme expression in reactive astrocytes following brain injury. Free Radic Biol Med 43: 191–201.

    PubMed  CAS  Google Scholar 

  • Savaskan NE, Ufer C, Kühn H, Borchert A. 2007a. Molecular biology of glutathione peroxidase 4: From genomic structure to developmental expression and neural function. Biol Chem 388: 1007–1017.

    PubMed  CAS  Google Scholar 

  • Sayre LM, Zelasko DA, Harris PL, Perry G, Salomon RG, et al. 1997. 4-Hydroxynonenal-derived advanced lipid peroxidation end products are increased in Alzheimer's disease. J Neurochem 68: 2092–2097.

    PubMed  CAS  Google Scholar 

  • Serhan CN. 2005. Novel eicosanoid and docosanoid mediators: Resolvins, docosatrienes, and neuroprotectins. Curr Opin Clin Nutr Metab Care 8: 115–121.

    PubMed  CAS  Google Scholar 

  • Serhan CN, Yacoubian S, Yang R. 2008. Anti-inflammatory and proresolving lipid mediators. Annu Rev Pathol 3: 279–312.

    PubMed  CAS  Google Scholar 

  • Sheu SS, Nauduri D, Anders MW. 2006. Targeting antioxidants to mitochondria: A new therapeutic direction. Biochim Biophys Acta 1762: 256–265.

    PubMed  CAS  Google Scholar 

  • Sies H, Stahl W, Sundquist AR. 1992. Antioxidant functions of vitamins. Vitamins E and C, beta-carotene, and other carotenoids. Ann N Y Acad Sci 669: 7–20.

    PubMed  CAS  Google Scholar 

  • Siesjo BK. 1993. Basic mechanisms of traumatic brain damage. Ann Emerg Med 22: 959–969.

    PubMed  CAS  Google Scholar 

  • Sindelar PJ, Guan Z, Dallner G, Ernster L. 1999. The protective role of plasmalogens in iron-induced lipid peroxidation. Free Radic Biol Med 26: 318–324.

    PubMed  CAS  Google Scholar 

  • Smeets EF, Comfurius P, Bevers EM, Zwaal RF, Stout JG, et al. 1994. Calcium-induced transbilayer scrambling of fluorescent phospholipid analogs in platelets and erythrocytes. Biochem Biophys Acta 1195: 281–286.

    PubMed  Google Scholar 

  • Söderberg M, Edlund C, Kristensson K, Dallner G. 1991. Fatty acid composition of brain phospholipids in aging and in Alzheimer's disease. Lipids 26: 421–425.

    PubMed  Google Scholar 

  • Song WL, Lawson JA, Reilly D, Rokach J, Chang CT, et al. 2008. Neurofurans, novel indices of oxidant stress derived from docosahexaenoic acid. J Biol Chem 283: 6–16.

    PubMed  CAS  Google Scholar 

  • Spector R, Johanson CE. 2007. Vitamin transport and homeostasis in mammalian brain: Focus on Vitamins B and E. J Neurochem 103: 425–438.

    PubMed  CAS  Google Scholar 

  • Spilt A, Weverling-Rijnsburger AW, Middelkoop HA, van Der Flier WM, Gussekloo J, et al. 2005. Late-onset dementia: Structural brain damage and total cerebral blood flow. Radiology 236: 990–995.

    PubMed  Google Scholar 

  • Spiteller G. 2006. Peroxyl radicals: Inductors of neurodegenerative and other inflammatory diseases. Their origin and how they transform cholesterol, phospholipids, plasmalogens, polyunsaturated fatty acids, sugars, and proteins into deleterious products. Free Radic Biol Med 41: 362–387.

    PubMed  CAS  Google Scholar 

  • Stadelmann-Ingrand S, Pontcharraud R, Fauconneau B. 2004. Evidence for the reactivity of fatty aldehydes released from oxidized plasmalogens with phosphatidylethanolamine to form Schiff base adducts in rat brain homogenates. Chem Phys Lipids 131: 93–105.

    PubMed  CAS  Google Scholar 

  • Stillwell W, Wassall SR. 2003. Docosahexaenoic acid: Membrane properties of a unique fatty acid. Chem Phys Lipids 126: 1–27.

    PubMed  CAS  Google Scholar 

  • Terman A, Brunk UT. 2006. Oxidative stress, accumulation of biological ‘garbage’, and aging. Antioxid Redox Signal 8: 197–204.

    PubMed  CAS  Google Scholar 

  • Thibault O, Gant JC, Landfield PW. 2007. Expansion of the calcium hypothesis of brain aging and Alzheimer's disease: Minding the store. Aging Cell 6: 307–317.

    PubMed  CAS  Google Scholar 

  • Turunen M, Olsson J, Dallner G. 2004. Metabolism and function of coenzyme Q. Biochim Biophys Acta 1660: 171–199.

    PubMed  CAS  Google Scholar 

  • Uchida K. 2003. 4-Hydroxy-2-nonenal: A product and mediator of oxidative stress. Prog Lipid Res 42: 318–343.

    PubMed  CAS  Google Scholar 

  • Uchida KA. 2008. Lipid-derived Endogenous Inducer of COX-2: A Bridge Between Inflammation and Oxidative Stress. Mol Cells 25: 347–351.

    PubMed  CAS  Google Scholar 

  • Ursini F, Maiorino M, Sevanian A. 1991. Membrane hydroperoxides. Sies H editor. Oxidative Stress: Oxidants and Antioxidants. New York: Academic Press; pp. 319–336.

    Google Scholar 

  • Van Kuijk FJ, Holte LL, Dratz EA. 1990. 4-Hydroxyhexenal: A lipid peroxidation product derived from oxidized docosahexaenoic acid. Biochim Biophys Acta 1043: 116–118.

    PubMed  CAS  Google Scholar 

  • van Meer G, Voelker DR, Feigenson GW. 2008. Membrane lipids: Where they are and how they behave. Nat Rev Mol Cell Biol 9: 112–124.

    PubMed  CAS  Google Scholar 

  • Wang X, Quinn PJ. 2000. The location and function of vitamin E in membranes (review). Mol Membr Biol 17: 143–156.

    PubMed  Google Scholar 

  • Wang X, Li N, Liu B, Sun H, Chen T, et al. 2004. A novel human phosphatidylethanolamine-binding protein resists tumor necrosis factor alpha-induced apoptosis by inhibiting mitogen-activated protein kinase pathway activation and phosphatidylethanolamine externalization. J Biol Chem 279: 45855–45864.

    PubMed  CAS  Google Scholar 

  • Yamada S, Funada T, Shibata N, Kobayashi M, Kawai Y, et al. 2004. Protein-bound 4-hydroxy-2-hexenal as a marker of oxidized n-3 polyunsaturated fatty acids. J Lip Res 45: 626–634.

    CAS  Google Scholar 

  • Yavin E. 2006. Versatile roles of docosahexaenoic acid in the prenatal brain: From pro- and anti- oxidant features to regulation of gene expression. Prostaglandins Leukot Essent Fatty Acids 75: 203–211.

    PubMed  CAS  Google Scholar 

  • Yavin E, Brand A. 2005 From intramolecular asymmetries to raft assemblies: A short guide for the puzzled in lipidomics. Membrane microdomain signaling. Mattson MP, editor. Totowa, NJ: Humana Press; pp. 1–14.

    Google Scholar 

  • Yavin E, Brand A, Green P. 2002. Docosahexaenoic acid abundance in the brain: A biodevice to combat oxidative stress. Nutr Neurosci 5: 149–157.

    PubMed  CAS  Google Scholar 

  • Yehuda S, Rabinovitz S, Carasso RL, Mostofsky DI. 2002. The role of polyunsaturated fatty acids in restoring the aging neuronal membrane. Neurobiol Aging 23: 843–853.

    PubMed  CAS  Google Scholar 

  • Yeung K, Seitz T, Li S, Janosch P, McFerran B, et al. 1999. Suppression of Raf-1 kinase activity and MAP kinase signalling by RKIP. Nature 401: 173–177.

    PubMed  CAS  Google Scholar 

  • Yoshida S, Inoh S, Asano T, Sano K, Kubota M, et al. 1980. Effect of transient ischemia on free fatty acids and phospholipids in the gerbil brain. Lipid peroxidation as a possible cause of postischemic injury. J Neurosurg 53: 323–333.

    PubMed  CAS  Google Scholar 

  • Young AJ, Johnson S, Steffens DC, Doraiswamy PM. 2007. Coenzyme Q10: A review of its promise as a neuroprotectant. CNS Spectr 12: 62–68.

    PubMed  Google Scholar 

  • Zoeller RA, Lake AC, Nagan N, Gaposchkin DP, Legner MA, et al. 1999. Plasmalogens as endogenous antioxidants: Somatic cell mutants reveal the importance of the vinyl ether. Biochem J 338: 769–776.

    PubMed  CAS  Google Scholar 

  • Zoeller RA, Morand OH, Raetz CR. 1988. A possible role for plasmalogens in protecting animal cells against photosensitized killing. J Biol Chem 263: 11590–11596.

    PubMed  CAS  Google Scholar 

  • Zommara M, Tachibana N, Mitsui K, Nakatani N, Sakono M, et al. 1995. Inhibitory effect of ethanolamine plasmalogen on iron- and copper-dependent lipid peroxidation. Free Radic Biol Med 18: 599–602.

    PubMed  CAS  Google Scholar 

  • Zwaal RF, Comfurius P, Bevers EM. 2005. Surface exposure of phosphatidylserine in pathological cells. Cell Mol Life Sci 62: 971–988.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this entry

Cite this entry

Brand-Yavin, A., Yavin, E. (2009). Brain Oxidative Stress from a Phospholipid Perspective. In: Lajtha, A., Tettamanti, G., Goracci, G. (eds) Handbook of Neurochemistry and Molecular Neurobiology. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-30378-9_25

Download citation

Publish with us

Policies and ethics