Skip to main content

Adaptive and Cooperative Cruise Control

  • Reference work entry
Handbook of Intelligent Vehicles

Abstract

The adaptive cruise control (ACC) and cooperative adaptive cruise control (CACC) system is the extension to the conventional cruise control (CC). This chapter focuses on the introduction of various design methodologies for ACC/CACC controllers. The ACC/CACC operation-mode transition and system architecture are presented in detail together with different system components to illustrate concepts and functions of ACC and CACC. A unified control problem formulation and multiple design objectives are then described. Different control design methodologies such as linear control design, nonlinear control design, model predictive control design, and fuzzy control design are reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 849.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Asadi B, Vahidi A (2011) Predictive cruise control: utilizing upcoming traffic signal information for improving fuel economy and reducing trip time. IEEE Trans Control Syst Technol 19:707–714

    Article  Google Scholar 

  • Bageshwar VL, Garrard WL, Rajamani R (2004) Model predictive control of transitional maneuvers for adaptive cruise control vehicles. IEEE Trans Veh Technol 53:1573–1585

    Article  Google Scholar 

  • Bruin Dd, Kroon J, Klaveren Rv, Nelisse M (2004) Design and test of a cooperative adaptive cruise control system. In: Proceedings of 2004 IEEE intelligent vehicle symposium, pp 392–396. Parma

    Google Scholar 

  • Bu F, Tan H-S, Jihua H (2010) Design and field testing of a cooperative adaptive cruise control system. In: Proceedings of the 2010 American control conference, pp 4616–4621. Baltimore

    Google Scholar 

  • Corona D, De Schutter B (2008) Adaptive cruise control for a SMART car: a comparison benchmark for MPC-PWA control methods. IEEE Trans Control Syst Technol 16:365–372

    Article  Google Scholar 

  • Corona D, Lazar M, De Schutter B, Heemels M (2006) A hybrid MPC approach to the design of a Smart adaptive cruise controller. In: Proceedings of the 2006 IEEE international conference on control applications. Munich, pp 231–236

    Google Scholar 

  • Ioannou P, Xu Z, Eckert S, Clemons D, Sieja T (1993) Intelligent cruise control: theory and experiment. In: Proceedings of the 32nd IEEE conference on decision and control, vol 2. San Antonio, pp 1885–1890

    Google Scholar 

  • ISO15622 (2010) Intelligent transport systems – Adaptive Cruise Control systems – Performance requirements and test procedures

    Google Scholar 

  • ISO22179 (2009) Intelligent transport systems – Full speed range adaptive cruise control (FSRA) systems – Performance requirements and test procedures

    Google Scholar 

  • Junmin W, Rajamani R (2004) Should adaptive cruise-control systems be designed to maintain a constant time gap between vehicles? IEEE Trans Veh Technol 53:1480–1490

    Article  Google Scholar 

  • Kim Y-S, Hong K-S (2004) An IMM algorithm for tracking maneuvering vehicles in an adaptive cruise control environment. Int J Control Autom Syst 2:310–318

    Google Scholar 

  • Li S, Li K, Rajamani R, Wang J (2011) Model predictive multi-objective vehicular adaptive cruise control. IEEE Trans Control Syst Technol 19:556–566

    Article  Google Scholar 

  • Liang C-Y, Peng H (1999) Optimal adaptive cruise control with guaranteed string stability. Veh Syst Dyn: Int J Veh Mech Mobil 32:313–330

    Article  Google Scholar 

  • Lu X-Y, Hedrick JK, Drew M (2002) ACC/CACC – control design, stability and robust performance. In: American control conference. Anchorage

    Google Scholar 

  • Marsden G, McDonald M, Brackstone M (2001) Towards an understanding of adaptive cruise control. Transp Res Part C: Emerg Technol 9:33–51

    Article  Google Scholar 

  • Martinez J-J, Canudas-de-Wit C (2007) A safe longitudinal control for adaptive cruise control and stop-and-go scenarios. IEEE Trans Control Syst Technol 15:246–258

    Article  Google Scholar 

  • Moon S, Yi K (2008) Human driving data-based design of a vehicle adaptive cruise control algorithm. Veh Syst Dyn: Int J Veh Mech Mobil 46:661–690

    Article  Google Scholar 

  • Moon S, Moon I, Yi K (2009) Design, tuning, and evaluation of a full-range adaptive cruise control system with collision avoidance. Control Eng Pract 17:442–455

    Article  Google Scholar 

  • Naranjo JE, Gonzalez C, Reviejo J, Garcia R, de Pedro T (2003) Adaptive fuzzy control for inter-vehicle gap keeping. IEEE Trans Intel Transp Syst 4:132–142

    Article  Google Scholar 

  • Naranjo JE, Gonzalez C, Garcia R, de Pedro T (2006) ACC + Stop&go maneuvers with throttle and brake fuzzy control. IEEE Trans Intel Transp Syst 7:213–225

    Article  Google Scholar 

  • Naus G, Ploeg J, van de Molengraft R, Steinbuch M (2008) Explicit MPC design and performance-based tuning of an adaptive cruise control stop-&-go. In: IEEE intelligent vehicles symposium. Eindhoven, pp 434–439

    Google Scholar 

  • Naus GJL, Ploeg J, Van de Molengraft MJG, Heemels WPMH, Steinbuch M (2010a) Design and implementation of parameterized adaptive cruise control: An explicit model predictive control approach. Control Eng Pract 18:882–892

    Article  Google Scholar 

  • Naus GJL, Vugts RPA, Ploeg J, van de Molengraft MJG, Steinbuch M (2010b) String-stable CACC design and experimental validation: a frequency-domain approach. IEEE Trans Veh Technol 59:4268–4279

    Article  Google Scholar 

  • Novakowski C, Shladover S, Bu F, O'Connell J, Spring J, Dickey S, Nelson D. (2010) Cooperative adaptive cruise control: testing drivers’ choices of following distances. California PATH, Richmond

    Google Scholar 

  • Persson M, Botling F, Hesslow E, Johansson R (1999) Stop and go controller for adaptive cruise control. In: Proceedings of the 1999 IEEE international conference on control applications. Kohala Coast, Vol 2, pp 1692–1697, Vol 1692

    Google Scholar 

  • Rajamani R, Zhu C (2002) Semi-autonomous adaptive cruise control systems. IEEE Trans Veh Technol 51:1186–1192

    Article  Google Scholar 

  • Shirakawa K (2008) PRISM: an in-vehicle CPU-oriented novel azimuth estimation technique for electronic-scan 76-GHz adaptive-cruise-control radar system. IEEE Trans Intel Transp Syst 9:451–462

    Article  Google Scholar 

  • Shladover S (1978) Longitudinal control of automated guideway transit vehicles within platoons. ASME J Dyn Syst, Meas Control 100:302–310

    Article  Google Scholar 

  • Swaroop D, Hedrick JK (1996) String stability of interconnected systems. IEEE Trans Autom Control 41:349–357

    Article  MathSciNet  MATH  Google Scholar 

  • Vahidi A, Eskandarian A (2003) Research advances in intelligent collision avoidance and adaptive cruise control. IEEE Trans Intel Transp Syst 4:143–153

    Article  Google Scholar 

  • Van Arem B, Van Driel JG, Visser R (2006) The impact of cooperative adaptive cruise control on traffic-flow characteristics. IEEE Trans Intel Transp Syst 7:429–436

    Article  Google Scholar 

  • Viti F, Hoogendoorn SP, Alkim TP, Bootsma G (2008) Driving behavior interaction with ACC: results from a field operational test in the Netherlands. In: Intelligent vehicles symposium, 2008 IEEE. Eindhoven, pp 745–750

    Google Scholar 

  • Weinberger M, Winner H, Bubb H (2001) Adaptive cruise control field operational test–the learning phase. JSAE Review 22:487–494

    Article  Google Scholar 

  • Widmann GR, Daniels MK, Hamilton L, Humm L, Riley B, Schiffmann JK, Schnelker DE, Wishon W (2000) Comparison of lidar-based and radar-based adaptive cruise control systems. In: SAE 2000 world congress, Detroit

    Google Scholar 

  • Xiao L, Gao F (2010) A comprehensive review of the development of adaptive cruise control systems. Veh Syst Dyn: Int J Veh Mech Mobil 48:1167–1192

    Article  Google Scholar 

  • Yanakiev D, Kanellakopoulos I (1998) Nonlinear spacing policies for automated heavy-duty vehicles. IEEE Trans Veh Technol 47:1365–1377

    Article  Google Scholar 

  • Zhang Y, Kosmatopoulos EB, Ioannou PA, Chien CC (1999) Autonomous intelligent cruise control using front and back information for tight vehicle following maneuvers. IEEE Trans Veh Technol 48:319–328

    Article  Google Scholar 

  • Zhou J, Peng H (2005) Range policy of adaptive cruise control vehicles for improved flow stability and string stability. IEEE Trans Intel Transp Syst 6:229–237

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fanping Bu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag London Ltd.

About this entry

Cite this entry

Bu, F., Chan, CY. (2012). Adaptive and Cooperative Cruise Control. In: Eskandarian, A. (eds) Handbook of Intelligent Vehicles. Springer, London. https://doi.org/10.1007/978-0-85729-085-4_9

Download citation

Publish with us

Policies and ethics