Skip to main content

Radiocarbon Dating

  • Reference work entry
  • First Online:
Encyclopedia of Geoarchaeology

Part of the book series: Encyclopedia of Earth Sciences Series ((EESS))

  • 440 Accesses

Synonyms

14C dating; Carbon-14 dating

Definition

Radiocarbon is a naturally occurring radioactive isotope of carbon used as the basis for a nuclear decay method of inferring age for terminal Pleistocene and Holocene Age organic materials.

Radiocarbon time scale provides a common chronometric time scale of worldwide applicability on a routine basis using the radiocarbon (14C) method. It is effective in age determination for the terminal Pleistocene and, except for the last few centuries, all of the Holocene.

Introduction

Carbon contains three naturally occurring isotopes, two of which are stable (12C, 13C) and one (14C or radiocarbon) which is, at the nuclear level, naturally unstable or radioactive and decays with a half-life of ~5,700 years. Radiocarbon (14C) dating is an isotopic or nuclear decay method of inferring age for organic materials, and it provides a common chronometric time scale of worldwide applicability for the late Quaternary. The technique is widely viewed as the...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 549.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 599.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  • Arnold, J. R., 1981. Willard F. Libby (1908–1980). In The American Philosophical Society Yearbook 1980. Philadelphia: The American Philosophical Society, pp. 608–612.

    Google Scholar 

  • Arnold, J. R., and Libby, W. F., 1949. Age determinations by radiocarbon content: checks with samples of known age. Science, 110(2869), 678–680.

    Article  Google Scholar 

  • Broecker, W. S., and Farrand, W. B., 1963. Radiocarbon age of the Two Creeks Forest Bed, Wisconsin. Geological Society of America Bulletin, 74(6), 795–802.

    Article  Google Scholar 

  • Bronk Ramsey, C., 2008. Radiocarbon dating: revolutions in understanding. Archaeometry, 50(2), 249–275.

    Article  Google Scholar 

  • Calcagnile, L., D’Onofrio, A., Fedi, M., Mandò, P. A., Quarta, G., Terrasi, F., and Tuniz, C., 2010. Accelerator mass spectrometry. In Proceedings of the 11th International Conference on Accelerators Mass Spectrometry (AMS-11), Rome, September 14–19, 2008. Nuclear Instruments and Methods Section B: Beam Interactions with Materials and Atoms, B268(7–8), 693–1359.

    Google Scholar 

  • Chatters, J. C., 2001. Ancient Encounters: Kennewick Man and the First Americans. New York: Simon & Schuster.

    Google Scholar 

  • Chen, J., Guo, Z., Liu, K., and Zhou, L., 2011. Development of accelerator mass spectrometry and its applications. Reviews of Accelerator Science and Technology, 4(1), 117–145.

    Article  Google Scholar 

  • Clark, G., 1970. Aspects of Prehistory. Berkeley: University of California Press.

    Google Scholar 

  • Clark, J. D., 1979. Radiocarbon dating and African archaeology. In Berger, R., and Suess, H. E. (eds.), Radiocarbon Dating: Proceedings of the Ninth International Conference, Los Angeles and La Jolla, 1976. Berkeley: University of California Press, pp. 7–31.

    Google Scholar 

  • Cook, G. T., Scott, E. M., and Harkness, D. D., 2010. Radiocarbon as a tracer in the global carbon cycle. In Froehlich, K. F. O. (ed.), Environmental Radionuclides: Tracers and Timers of Terrestrial Processes. Amsterdam: Elsevier. Radioactivity in the Environment 16, pp. 89–137.

    Google Scholar 

  • Damon, P. E., Donahue, D. J., Gore, B. H., Hatheway, A. L., Jull, A. J. T., Linick, T. W., Sercel, P. J., Toolin, L. J., Bronk, C. R., Hall, E. T., Hedges, R. E. M., Housley, R., Law, I. A., Perry, C., Bonani, G., Trumbore, S., Woelfli, W., Ambers, J. C., Bowman, S. G. E., Leese, M. N., and Tite, M. S., 1989. Radiocarbon dating of the Shroud of Turin. Nature, 337(6208), 611–615.

    Article  Google Scholar 

  • De Vries, H., 1958. Variations in concentration of radiocarbon with time and location on Earth. Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen Series B, 61(2), 94–102.

    Google Scholar 

  • Dickinson, W. R., 2011. Geological perspectives on the Monte Verde archeological site in Chile and pre-Clovis coastal migration in the Americas. Quaternary Research, 76(2), 201–210.

    Article  Google Scholar 

  • Dickson, J. H., Oeggl, K., and Handley, L. L., 2003. The ice man reconsidered. Scientific American, 288(5), 70–79.

    Article  Google Scholar 

  • Dickson, J. H., Oeggl, K., and Handley, L. L., 2005. The iceman reconsidered. Scientific American, Special Archaeology Volume, 15(1), 4–13.

    Google Scholar 

  • Dillehay, T. D., 1989. Monte Verde: A Late Pleistocene Settlement in Chile. volume 1. Paleo-environment and Site Context. Washington, DC: Smithsonian Institution Press.

    Google Scholar 

  • Dillehay, T. D., 1997. Monte Verde: A Late Pleistocene Settlement in Chile. volume 2. The Archaeological Context and Interpretation. Washington, DC: Smithsonian Institution Press.

    Google Scholar 

  • Dillehay, T. D., Ramírez, C., Pino, M., Collins, M. B., Rossen, J., and Pino-Nararro, J. D., 2008. Monte Verde: seaweed, food, medicine, and the peopling of South America. Science, 320(5877), 784–786.

    Article  Google Scholar 

  • Freer-Waters, R. A., and Jull, A. J. T., 2010. Investigating a dated piece of the Shroud of Turin. Radiocarbon, 52(4), 1521–1527.

    Article  Google Scholar 

  • George, D., Southon J. R., Taylor, R. E. 2005. Resolving an anomalous radiocarbon determination on Mastodon bone from Monte Verde, Chile. American Antiquity, 70(4):764–770.

    Google Scholar 

  • Haynes, C. V., Jr., Doberenz, A. R., and Allen, J. A., 1966. Geological and geochemical evidence concerning the antiquity of bone tools from Tule Springs, Site 2, Clark County, Nevada. American Antiquity, 31(4), 517–521.

    Article  Google Scholar 

  • Johnson, F., Rainey, F., Collier, D., and Flint, R. F., 1951. Radiocarbon dating, a summary. In Johnson, F. (ed.), Radiocarbon Dating: A Report on the Program to Aid in the Development of the Method of Dating. Salt Lake City: Society for American Archaeology. Memoirs of the Society for American Archaeology 8, pp. 59–63.

    Google Scholar 

  • Kirner, D. L., Burky, R., Taylor, R. E., and Southon, J. R., 1997. Radiocarbon dating organic residues at the microgram level. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, B123(1–4), 214–217.

    Article  Google Scholar 

  • Knezovich, J., Brown T., Buchholz, B., Finkel, R., Guilderson, T., Kashgarian, M., Nimz, G., Ognibene, T., Turney, S., and Vogel, J. (eds.), 2007. Accelerator mass spectrometry. In Proceedings of the Tenth International Conference on Accelerator Mass Spectrometry, Berkeley, California, USA, 510 September 2005. Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms, B259(1), 1–816.

    Google Scholar 

  • L’Annunziata, M. F., 2007. Radioactivity: Introduction and History. Amsterdam: Elsevier.

    Google Scholar 

  • Leavitt, S. W., and Kahn, R. M., 1992. A new tree-ring width, δ13C and 14C investigation of the Two Creeks site. Radiocarbon, 34(3), 792–797.

    Article  Google Scholar 

  • Libby, W. F., 1952. Radiocarbon Dating. Chicago: University of Chicago Press.

    Google Scholar 

  • Libby, W. F., 1955. Radiocarbon Dating, 2nd edn. Chicago: University of Chicago Press.

    Google Scholar 

  • Libby, W. F., Anderson, E. C., and Arnold, J. R., 1949. Age determination by radiocarbon content: world-wide assay of natural radiocarbon. Science, 109(2827), 227–228.

    Article  Google Scholar 

  • Long, A., 2000. Radiocarbon: brief history of a journal. Radiocarbon, 42(1), xvii–xx.

    Google Scholar 

  • Pollard, A. M., 2009. Measuring the passage of time: achievements and challenges in archaeological dating. In Cunliffe, B. W., Gosden, C., and Joyce, R. A. (eds.), The Oxford Handbook of Archaeology. Oxford: Oxford University Press, pp. 145–168.

    Google Scholar 

  • Prinoth-Fornwagner, R., and Niklaus, T. R., 1994. The man in the ice: results from radiocarbon dating. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, B92(1–4), 282–290.

    Article  Google Scholar 

  • Reimer, P. J., Baillie, M. G. L., Bard, E., Bayliss, A., Beck, J. W., Blackwell, P. G., Bronk Ramsey, C., Buck, C. E., Burr, G. S., Edwards, R. L., Friedrich, M., Grootes, P. M., Guilderson, T. P., Hajdas, I., Heaton, T. J., Hogg, A. G., Hughen, K. A., Kaiser, K. F., Kromer, B., McCormac, F. G., Manning, S. W., Reimer, R. W., Richards, D. A., Southon, J. R., Talamo, S., Turney, C. S. M., van der Plicht, J., and Weyhenmeyer, C. E., 2009. IntCal09 and Marine09 radiocarbon age calibration curves, 0–50,000 years cal BP. Radiocarbon, 51(4), 1111–1150.

    Article  Google Scholar 

  • Renfrew, C., 1973. Before Civilization: The Radiocarbon Revolution and Prehistoric Europe. New York: Knopf.

    Google Scholar 

  • Sellards, E. H., 1952. Early Man in America. Austin: University of Texas Press.

    Google Scholar 

  • Stuiver, M., and Polach, H. A., 1977. Discussion: reporting of 14C data. Radiocarbon, 19(3), 355–363.

    Article  Google Scholar 

  • Stuiver, M., and Reimer, P. J., 1993. Extended 14C database and revised CALIB 3.0 14C age calibration program. Radiocarbon, 35(1), 215–230.

    Article  Google Scholar 

  • Stuiver, M., and Suess, H. E., 1966. On the relationship between radiocarbon dates and true sample ages. Radiocarbon, 8(1), 534–540.

    Article  Google Scholar 

  • Suess, H. E., 1955. Radiocarbon concentration in modern wood. Science, 122(3166), 415–417.

    Article  Google Scholar 

  • Suess, H. E., 1965. Secular variations of the cosmic-ray-produced carbon 14 in the atmosphere and their interpretations. Journal of Geophysical Research, 70(23), 5937–5952.

    Article  Google Scholar 

  • Taylor, R. E., 1987. Radiocarbon Dating: An Archaeological Perspective. Orlando: Academic.

    Google Scholar 

  • Taylor, R. E., 1996. Radiocarbon dating: the continuing revolution. Evolutionary Anthropology, 4(5), 169–181.

    Article  Google Scholar 

  • Taylor, R. E., 2001. Radiocarbon dating. In Brothwell, D. R., and Pollard, A. M. (eds.), Handbook of Archaeological Sciences. Chichester: Wiley, pp. 23–34.

    Google Scholar 

  • Taylor, R. E., and Southon, J. R., 2007. Use of natural diamonds to monitor 14C AMS instrument backgrounds. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, B259(1), 282–287.

    Article  Google Scholar 

  • Taylor, R. E., Haynes, C. V., Jr., Kirner, D. L., and Southon, J. R., 1999. Radiocarbon analyses of modern organics at Monte Verde, Chile: no evidence for a local reservoir effect. American Antiquity, 64(3), 455–460.

    Article  Google Scholar 

  • Taylor, R. E., Smith, D. G., and Southon, J. R., 2001. The Kennewick skeleton: chronological and biomolecular contexts. Radiocarbon, 43(2B), 965–976.

    Article  Google Scholar 

  • Taylor, R. E., Southon, J. R., and Des Lauriers, M. R., 2007. Holocene marine reservoir time series ΔR values from Cedros Island, Baja California. Radiocarbon, 49(2), 899–904.

    Article  Google Scholar 

  • Trumbore, S. E., 2000. Radiocarbon geochronology. In Noller, J. S., Sowers, J. M., and Lettis, W. R. (eds.), Quaternary Geochronology: Methods and Applications. Washington, DC: American Geophysical Union, pp. 41–60.

    Chapter  Google Scholar 

  • Usoskin, I. G., and Kromer, B., 2005. Reconstruction of the 14C production rate from measured relative abundance. Radiocarbon, 47(1), 31–37.

    Article  Google Scholar 

  • Vanzetti, A., Vidale, M., Gallinaro, M., Frayer, D. W., and Bondioli, L., 2010. The iceman as a burial. Antiquity, 84(325), 681–692.

    Article  Google Scholar 

  • Zink, A., Graefen, A., Oeggl, K., Dickson, J., Leitner, W., Kaufmann, G., Fleckinger, A., Gostner, P., and Egarter-Vigl, E., 2011. The iceman is not a burial: reply to Vanzetti et al. 2011. Antiquity, 85, 328.

    Google Scholar 

Download references

Acknowledgments

The preparation of this article was, in part, supported by the Gabrielle O. Vierra Memorial Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. E. Taylor .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Taylor, R.E. (2017). Radiocarbon Dating. In: Gilbert, A.S. (eds) Encyclopedia of Geoarchaeology. Encyclopedia of Earth Sciences Series. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-4409-0_48

Download citation

Publish with us

Policies and ethics