Skip to main content

Part of the book series: Encyclopedia of Earth Sciences Series ((EESS))

Radiocarbon (14C) dating, now in its fifth decade of routine use, remains the most widely employed method of inferring chronometric age for organic materials from the late Pleistocene and Holocene. It provides the principal time scale for reconstruction of the history of late Quaternary environments, including the temporal scale for climate proxy records, and documents chronometric relationships for prehistoric human cultures on a world-wide basis.

Radiocarbon dating model

The natural production of 14C is a secondary effect of cosmic-ray interactions with atmospheric gas molecules, with the resultant production of neutrons (Figure R1). Most 14C is formed by the reaction of neutrons with 14N. It is then rapidly oxidized to form 14CO2. In this form, 14C is distributed throughout the Earth’s atmosphere by stratospheric winds, becoming generally well-mixed by the time 14C-tagged CO2 molecules reach the Earth’s surface. Most 14C is absorbed in the oceans, while 1–2% becomes part of the...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 449.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 649.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  • Bard, E., 1998. Geochemical and geophysical implications of the radiocarbon calibration. Geochimica et Cosmochimica Acta, 62, 2025–2038.

    Article  Google Scholar 

  • Bard, E., Arnold, M., Hamelin, B., Tisnerat-Laborde, N., and Cabioch, G., 1998. Radiocarbon calibration by means of mass spectrometric 230Th-234U and 14C ages of on corals. Radiocarbon, 40, 1085–1092.

    Google Scholar 

  • Bell, W.T., 1991. Thermoluminescence dates for the Lake Mungo aboriginal fireplaces and the implication for the radiocarbon time scale. Archaeometry, 33, 43–50.

    Article  Google Scholar 

  • Bronk, C.R., and Hedges, R.E.M., 1987. A gas ion source for radiocarbon dating. Nucl. Instrum. Methods, B29, 45–49.

    Google Scholar 

  • Buck, C.E., and Christen, J.A., 1998. A novel approach to selecting samples for radiocarbon dating. J. Archaeol. Sci., 24, 303–310.

    Article  Google Scholar 

  • Damon, P.E., Donahue, D.J., Gord, B.H., Hatheway, A.L., Jull, A.J.T., Linick, T.W., Sercelo, P.J., Toolin, L.J., Bronk, C.R., Hall, E.T., Hedges, R.E.M., Housley, R., Law, I.A., Perry, C., Bonani, G., Trumbore, S., Wolfli, W., Ambers, J.C., Bowman, S.G.E., Leese, M.N., and Tite, M.S., 1989. Radiocarbon dating the shroud of Turin. Nature, 337, 611–615.

    Article  Google Scholar 

  • Edwards, R.L., Beck, J.W., Burr, G.S., Donahue, D.J., Chappell, J.M.A., Bloom, A.L., Druffel, E.R.M., and Taylor, F.W., 1993. A large drop in atmospheric 14C/12C and reduced melting in the Younger Dryas, documented with 230Th ages of corals. Science, 260, 962–968.

    Article  Google Scholar 

  • Erlenkeuser, H., 1979. A thermal diffusion plan for radiocarbon isotope enrichment from natural samples. In Berger, R., and Suess, H.E. (eds.), Radiocarbon Dating. Berkeley, CA: University of California Press, pp. 216–237.

    Google Scholar 

  • Geyh, M.A., and Schlüchter, C., 1998. Calibration of the 14C time scale beyond 22,000 bp. Radiocarbon, 40, 475–482.

    Google Scholar 

  • Gove, H.E., 1992. The history of AMS, its advantages over decay counting: Applications and Prospects. In Taylor, R.E., Long, A., and Kra, R.S. (eds.), Radiocarbon after Four Decades an Interdisciplinary Perspective. New York: Springer, pp. 214–229.

    Google Scholar 

  • Gove, H., 1996. Relic, Icon, or Hoax? Carbon Dating the Turin Shroud. Bristol: Institute of Physics.

    Google Scholar 

  • Gove, H., 1999. From Hiroshima to the Iceman: The Development and Applications of Accelerator Mass Spectrometry. Bristol: Institute of Physics.

    Google Scholar 

  • Grootes, P.M., Mook, W.G., Vogel, J.C., de Vries, A.E., Haring, A., and Kismaker, J., 1975. Enrichment of radiocarbon for dating samples up to 75,000 years. Zeitschrift füer Naturforschung, 30A, 1–14.

    Google Scholar 

  • Hedges, R.E.M., 1995. Radiocarbon dating by accelerator mass spectrometry. Am. J. Archaeol., 99, 105–108.

    Google Scholar 

  • Hogg, A.G., McCornac, F.G., Higham, T.F.G., Reimer, P.J., Baillie, M.G.I., and Palmer, J.G., 2002. High-precision radiocarbon measurements of contemporaneous tree-ring dated wood from the British Isles and New Zealand: ad 1850–950. Radiocarbon, 44, 633–640.

    Google Scholar 

  • Jull, A.J.T., Danahue, D.J., and Damon, P.E., 1996. Factors affecting the apparent radiocarbon age of textiles: A comment on “Effects of fires and biogractionation of carbon isotopes on results of radiocarbon dating of old textiles: The Shroud of Turin.” J. Archaeol. Sci., 23, 109–121.

    Article  Google Scholar 

  • Kirner, D., Taylor, R.E., and Southon, J.R., 1995. Reduction in backgrounds of microsamples for AMS 14C dating. Radiocarbon, 37, 697–704.

    Google Scholar 

  • Kirner, D., Burky, R., Taylor, R.E., and Southon, J.R., 1997. Radiocarbon dating organic residues at the microgram level. Nucl. Instrum. Methods Phys. Res., B123, 214–217.

    Google Scholar 

  • Kojo, Y., Kalin, R.M., and Long, A., 1994. High-precision ‘wiggle-matching’ in radiocarbon dating. J. Archaeol. Sci., 21, 475–479.

    Article  Google Scholar 

  • Linick, T.W., Damon, P.E., Donahue, D.J., and Jull, A.J.T., 1989. Accelerator mass spectrometry: The new revolution in radiocarbon dating. Quaternary Int., 1, 1–6.

    Article  Google Scholar 

  • Long, A., 1998. Attempt to affect the apprent 14C age of cotton by scorching in a CO2 environment. Radiocarbon, 40, 57–58.

    Google Scholar 

  • Long, A., Benz, B.F., Donahue, D.J., Jull, A.J.T., and Toolin, L.J., 1989. First direct AMS dates on early maize from Tehuacan, Mexico. Radiocarbon, 31, 1035–1040.

    Google Scholar 

  • Mazaud, A., Laj, C., Bard, E., Arnold, M., and Tric, E., 1992. A geomagnetic calibration of the radiocarbon time-scale. In Bard, E., and Broecker, W.S. (eds.), The Last Deglaciation: Absolute and Radiocarbon Chronologies. Berlin: Springer, pp. 163–169.

    Google Scholar 

  • Muller, R.A., 1977. Radioisotope dating with a cyclotron. Science, 196, 489–494.

    Article  Google Scholar 

  • Reimer, P.J., Hughen, K.A., Guilderson, T.P., McCormac, G., Baille, M.G.L., Bard, Ed. Barratt, P., Beck, J.W., Buck, C.E., Damon, P.E., Friedrich, M., Kromer, B., Ramsey, C.B., Reimer, R.W., Remmele, S., Southon, J.R., Stuiver, M., van der Plicht, J., 2002. Preliminary report of the first workshop of the INTCAL04 radiocarcbon calibration/comparison working group. Radiocarbon, 44, 653–661.

    Google Scholar 

  • Scott, E.M., Long, A., and Kra, R., (eds.) 1990. Proceedings of the International Workshop on Intercomparison of Radiocarbon Laboratories. Radiocarbon, 32(3), 253–397.

    Google Scholar 

  • Southon, J.R., Deino, A.L., Orsi, G., Terrasi, R., and Campajola, L., 1995. Calibration of the radiocarbon time scale at 37KA bp. Abstract of Papers, 209th American Chemical Society National Meeting, Part 2, p. 10.

    Google Scholar 

  • Stuiver, M., and Polach, H.A., 1977. Discussion: Reporting of 14C data. Radiocarbon, 19, 355–363.

    Google Scholar 

  • Stuiver, M., and Reimer, P.J., 1993. Extended 14C data base and revised CALIB 3.0 14C age calibration program. Radiocarbon, 35, 215–230.

    Google Scholar 

  • Stuiver, M., Long, A., and Kra, R.S., (eds.) 1998a. INTCAL 98: Calibration Issue. Radiocarbon, 40, 1041–1159.

    Google Scholar 

  • Stuiver, M., Reimer, P.J., Bard, E., Beck, J.W., Burr, G.S., Hughen, K.A., Kromer, B., McCormac, G., van der Plicht, J., and Spurk, M., 1998b. INTCAL98 Radiocarbon age calibration 24,000–0 cal bp. Radiocarbon, 40, 1041–1083.

    Google Scholar 

  • Suess, H.E., 1970. Bristlecone-pine calibration of radiocarbon time 5200 bc to present. In Olsson, I.U. (ed.), Radiocarbon Variations and Absolute Chronology. Stockholm: Almqvist & Wiksell, pp. 303–312.

    Google Scholar 

  • Taylor, R.E., 1987. Radiocarbon Dating An Archaeological Perspective. San Diego, CA: Academic Press.

    Google Scholar 

  • Taylor, R.E., 1991. Radioisotope dating by accelerator mass spectrometry: Archaeological and paleoanthropological perspectives. In Göksu, H.Y., Oberhofer, M., and Regulloi, D. (eds.), Scientific Dating Methods. Dordrecht (Netherlands): Kluwer, pp. 37–54.

    Google Scholar 

  • Taylor, R.E., 1996. Radiocarbon dating: The continuing revolution. Evol. Anthropol., 4, 169–181.

    Article  Google Scholar 

  • Taylor, R.E., 1997a. Radiocarbon dating. In Taylor, R.E., and Aitken, M.J. (eds.), Chronometric Dating in Archaeology. New York: Plenum, pp. 65–96.

    Google Scholar 

  • Taylor, R.E., 1997b. Review of H.E. Gove, Relic, Icon or Hoax? Carbon Dating the Turin Shroud. Radiocarbon 39, 115–117.

    Google Scholar 

  • Taylor, R.E., 2001. Radiocarbon dating. In Brothwell, D.R., and Pollard, A.M. (eds.), Handbook of Archaeological Sciences. New York: Wiley, pp. 23–34.

    Google Scholar 

  • Taylor, R.E., Donahue, D.J., Zabel, T.H., Damon, P.E., and Jull, A.T.J., 1984. Radiocarbon dating by particle accelerators: An archaeological Perspective. In Lambert, J.B. (ed.), Archaeological Chemistry III. Washington, DC: American Chemical Society, pp. 333–356.

    Google Scholar 

  • Taylor, R.E., Stuiver, M., and Reimer, P.J., 1996. Development and extension of the calibration of the radiocarbon time scale: Archaeological applications. Quaternary Sci. Rev., 15, 655–668.

    Article  Google Scholar 

  • Voelker, A.H.L., Sarnthein, M., Grootes, P.M., Erlenkeuser, H., Laj, C., Mazaud, A., Nadeau, M.-J., and Schleicher, M., 1998. Correlation of marine 14C ages from the Nordic seas with the GISP2 isotope record: implications for 14C calibration beyond 25 ka bp. Radiocarbon, 40, 517–534.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag

About this entry

Cite this entry

Taylor, R.E. (2009). Radiocarbon Dating. In: Gornitz, V. (eds) Encyclopedia of Paleoclimatology and Ancient Environments. Encyclopedia of Earth Sciences Series. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-4411-3_200

Download citation

Publish with us

Policies and ethics