Skip to main content

Part of the book series: Encyclopedia of Earth Sciences Series ((EESS))

  • 776 Accesses

Invertebrates are the most common constituents of the metazoan fossil record, and since they are abundant in Phanerozoic marine sedimentary rocks worldwide, they are of great utility in reconstructing ancient climates and environments. Here, we review two aspects of this record. First, we discuss the utility of invertebrate marine fossil assemblages in interpreting ancient climates and environments, and second, we explore the ways in which shell chemistry may be used to further address these issues.

Interpreting ancient climates

In modern environments, marine diversity is greatest at equatorial latitudes, and declines towards higher latitudes. In general, data from the fossil record is in accord with this observation, showing a similar pattern throughout the Phanerozoic (Hallam, 1994; Parrish, 1998). Although the primary factor governing this pattern is a subject of some debate, many environmental factors other than temperature are clearly important. These include availability of...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 449.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 649.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  • Addicott, W.O., 1969. Tertiary climatic change in the marginal northeastern Pacific Ocean. Science, 165, 583–586.

    Article  Google Scholar 

  • Allmon, W.D., Emslie, S.D., Jones, D.S., and Morgan, G.S., 1996. Late Neogoene oceanographic change along Florida’s west coast: evidence and mechanisms. J Geol, 104, 143–162.

    Google Scholar 

  • Anderson, T.F., Popp, B.N., Williams, A.C., Ho, L.-Z., and Hudson, J.D., 1994. The stable isotopic record of fossils from the Peterborough Member, Oxford Clay Formation (Jurassic), UK: paleoenvironmental implications. J Geolo Soc Lond, 151, 125–138.

    Article  Google Scholar 

  • Cocks, L.R.M., and Fortey, R.A., 1990. Biogeogrpahy of Ordovician and Silurian faunas. In McKerrow, W.S., and Scotese, C.R. (eds.), Palaeozoic Palaeogeography and Biogeography. Geological Society of London Memoir 12, pp. 97–104.

    Google Scholar 

  • Cook, H.E., and Taylor, M.E., 1975. Early Paleozoic continental margin sedimentation, trilobite biofacies, and the thermocline, western United States. Geology, 3, 559–562.

    Article  Google Scholar 

  • Fortey, R.A., 1975. Early Ordovician trilobite communities. Fossils Strata, 4, 339–360.

    Google Scholar 

  • Gladenkov, A.Y., Oleinik, A.E., Marincovich, L. Jr., and Barinov, K.B., 2002. A refined age for the earliest opening of Bering Strait. Palaeogeography, Palaeoclimatology. Palaeoecology, 183, 321–328.

    Article  Google Scholar 

  • Hallam, A., 1994. An outline of Phanerozoic biogeography, Oxford Biogeography Series, 10.

    Google Scholar 

  • Harper, D.A.T., and Jeffrey, A.L., 1996. Mid-Dinantian brachiopod Biofacies from western Ireland. In Strogen, P., Somerville, I.D., and Jones, G.L. (eds.), Recent advances in Lower Carboniferous geology. vol. 107, London: Geological Society Special Publication, pp. 427–436.

    Google Scholar 

  • Harper, D.A.T., and Sandy, M.R., 2001. Paleozoic brachiopod biogeography. Paleontol Soc, (Special Paper), 7, 207–222.

    Google Scholar 

  • Heckel, P.H., 1972. Recognition of ancient shallow marine environments. SEPM, (Special Publication), 16, 226–286.

    Google Scholar 

  • Hudson, J.D., and Anderson, T.F., 1989. Ocean temperatures and isotopic compositions through time. Trans R Soc Edinb, 80, 183–192.

    Google Scholar 

  • Johnson, J.G., 1974. Early Devonian brachiopod biofacies of western and Arctic North America. J Paleontol, 48, 809–819.

    Google Scholar 

  • Kelley, P.H., Raymond, A., and Lutken, C.B., 1990. Carboniferous brachiopod migration and latitudinal diversity: a new paleoclimatic method. In McKerrow, W.S., and Scotese, C.R. (eds.), Palaeozoic Palaeogeography and Biogeography. Geological Society of London Memoir 12, pp. 325–332.

    Google Scholar 

  • Lowenstam, H.A., 1964. Palaeotemperatures of the Permian and Cretaceous periods. In Nairn, A.E.M. (ed.), Problems in Paleoclimatology. London: Wiley, pp. 227–248.

    Google Scholar 

  • Nakashima, R., 2002. Geographic distribution of the late Cenozoic bivalve Fortipecten in the northwestern Pacific. Palaeogeogr, Palaeoclimatol, Palaeoecol, 186, 261–274.

    Article  Google Scholar 

  • Parrish, J.T., 1998. Interpreting Pre-Quaternary Climate from the Geologic Record. New York: Columbia University Press.

    Google Scholar 

  • Patzkowsky, M.E., 1995. Gradient analysis of Middle Ordovician brachiopod biofacies; biostratigraphic, biogeographic, and macroevolutionary implications. Palaios, 10, 154–179.

    Article  Google Scholar 

  • Raymond, A., Kelley, P.H., and Lutken, C.B., 1989. Polar glaciers and life at the equator: the history of Dinantian and Namurian (Carboniferous) climate. Geology, 17, 408–411.

    Article  Google Scholar 

  • Roy, K., Valentine, J.W., Jablonski, D., and Kidwell, S.M., 1996. Scales of climatic variability and time averaging in Pleistocene biotas: implications for ecology and evolution. Trends Ecol Evol, 11, 458–463.

    Article  Google Scholar 

  • Sageman, B.B., and Bina, C., 1997. Diversity and species abundance patterns in Late Cenomanian black shale Biofacies: Western Interior. U.S. Palaios, 12, 449–466.

    Article  Google Scholar 

  • Sanders, H.L., 1968. Marine benthic diversity: a comparative study. Am Nat, 102, 243–282.

    Article  Google Scholar 

  • Sandy, M.R., 1995. Early Mesozoic (Late Triassic-Upper Jurassic) Tethyan brachiopod Biofacies; possible evolution intra-phylum niche replacement within the Brachiopoda. Paleobiology, 21, 479–495.

    Google Scholar 

  • Savrda, C.E., and Bottjer, D.J., 1987. The exaerobic zone, a new oxygen-deficient marine Biofacies. Nature, 327, 54–56.

    Article  Google Scholar 

  • Savrda, C.E., Bottjer, D.J., and Gorsline, D.S., 1984. Development of a comprehensive oxygen-deficient marine biofacies model: evidence from Santa Monica, San Pedro, and Santa Barbara Basins, California continental borderland. AAPG Bull, 68, 1179–1192.

    Google Scholar 

  • Valentine, J.W., 1973. Evolutionary Paleoecology of the Marine Biosphere. New Jersey: Prentice Hall.

    Google Scholar 

  • Vermeij, G.J., 1978. Biogeography and Adaptation. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Webber, A.J., 2002. Use of high-resolution faunal gradient analysis to assess the causes of meter-scale cyclicity in the type Cincinnatian Series (Upper Ordovician). Palaios, 17, 545–555.

    Article  Google Scholar 

  • Ziegler, A.M., Hulver, M.L., Lottes, A.L., and Schmachtenberg, W.F., 1984. Uniformitarianism and paleoclimates: inferences from the distribution of carbonate rocks. In Brenchley, P.J. (ed.), Fossils and Climate. Chichester: Wiley, pp. 3–25.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag

About this entry

Cite this entry

Gaines, R.R., Droser, M.L. (2009). Animal Proxies – Invertebrates. In: Gornitz, V. (eds) Encyclopedia of Paleoclimatology and Ancient Environments. Encyclopedia of Earth Sciences Series. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-4411-3_5

Download citation

Publish with us

Policies and ethics