Skip to main content

Isotopes, Radiogenic

  • Reference work entry
Encyclopedia of Geobiology

Part of the book series: Encyclopedia of Earth Sciences Series ((EESS))

  • 282 Accesses

Definition

Radiogenic nuclides (more commonly referred to as “radiogenic isotopes”) are produced by a process of radioactive decay. Radioactive decay means that unstable isotopes (mother nuclides) are spontaneously transferred into stable isotopes (daughter nuclides) by emission of particles and loss of energy (radioactive radiation).

Introduction

The radioactive decay provides an accurate method of measuring the ages of rocks and minerals. This possibility was recognized both by Rutherford (1906) and Boltwood (1907) at the beginning of the twentieth century. However, the measurement and interpretation of variations in the isotopic composition of certain elements in natural materials were not possible until modern mass spectrometers were developed based on the design by Nier (1940). After the World War II, isotope determinations became an important tool in modern geology, geochemistry, and geobiology not only for dating geological processes, but also for investigations of climate...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 449.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  • Asmerom, Y., Jacobseb, S. B., Knoll, A. H., Butterfield, N. J., and Swett, K., 1991. Strontium variations of Neoproterozoic seawater: implications for crustal evolution. Geochimica Cosmochimica Acta, 55, 2883–2894.

    Article  Google Scholar 

  • Bock, B., Liebetrau, V., Eisenhauer, A., Frei, R., and Leipe, T., 2005. Nd isotope signature of Holocene Baltic Mn/Fe precipitates as a monitor of climate change during the Little Ice Age. Geochimica et Cosmochimica Acta, 68, 2253–2263.

    Article  Google Scholar 

  • Boltwood, B. B., 1907. On the ultimate disintegration products of the radioactive elements. American Journal of Science, 23(4), 77–88.

    Article  Google Scholar 

  • Brian, L., and Johnson, C., 2000. Strontium isotope Composition of skeletal material can determine the birth place and geographic mobility of humans and animals. Journal of Forensic Science, 455, 1049–1061.

    Google Scholar 

  • Burke, W. H., Denison, R. E., Hetherington, E. A., Koepnick, R. B., Nelson, H. F., and Otto, J. B., 1982. Variations of seawater 87Sr/86Sr throughout Phanerozoic time. Geology, 10, 516–519.

    Article  Google Scholar 

  • Cicchella, D., De Vivo, B., Lima, A., Albanese, S., McGill, R. A. R., and Parrish, R. R., 2008. Heavy metal pollution and Pb isotopes in urban soils of Napoli, Italy. Geochemistry: Exploration, Environment, Analyses, 8, 103–112.

    Article  Google Scholar 

  • Derry, L. A., Keto, L. S., Jacobsen, S. B., Knoll, A. H., and Swett, K., 1989. Sr Isotope variations in Upper Proterozoic carbonates from Svalbard and East Greenland. Geochimica et Cosmochimica Acta, 53, 2331–2339.

    Article  Google Scholar 

  • Fietzke, J., and Eisenhauer, A., 2006. Determination of temperature-dependent stable strontium isotope (88Sr/86Sr) fractionation via bracketing standard MC-ICP-MS. Geochemistry Geophysics Geosystems, 7, Q08009, doi 10.1029/2006GC001243.

    Article  Google Scholar 

  • Hamelin, B., Ferrand, J. L., Alleman, L., Nicolas, E., and Veron, A., 1997. Isotopic evidence of pollant lead transport from North America to the subtropical North Atlantic gyre. Geochimica Cosmochimica Acta, 61, 4423–4428.

    Article  Google Scholar 

  • Hansen, B. T., 2005. Isotope, die Gene der Gesteine. In Reitner, J., Weber, K., and Karg, U. (eds.), In Das System Erde – Was bewegt die Welt? Lebensraum und Zukunftsperspektiven. Göttingen: Universitätsverlag Göttingen, pp. 73–87.

    Google Scholar 

  • Hautermans, F. G., 1946. Die Isotopenhäufigkeiten im natürlichen Blei und das Alter des Urans. Naturwissenschaften, 33, 185–186.

    Article  Google Scholar 

  • Holmes, A., 1946. An estimate of the age of the earth. Nature, 157, 680–684.

    Article  Google Scholar 

  • Ip, C. C. M., Li, X. D., Zhang, G., Wong, C. S. C., and Zhang, W. L., 2005. Heavy metal and Pb isotopic composition of aquatic organisms in the Pearl River Estuary, South China. Enviromental Pollution, 138, 494–504.

    Article  Google Scholar 

  • Kaufman, A. J., Jacobseb, S. B., and Knoll, A. H., 1993. The Vendian record of Sr and C isotopic variations in seawater: implications for tectonics and paleoclimate. Earth and Planetary Science Letters, 120, 409–430.

    Article  Google Scholar 

  • Klaus, J. S., Hansen, B. T., and Buapeng, S., 2007. 87Sr/86Sr ratio: a natural tracer to monitor groundwater flow paths during artificial recharge in the Bangkok area, Thailand, with respect to Public Water Supply and Freshwater Reinjection. Hydrology Journal, 15, 745–758.

    Google Scholar 

  • McArthur, J. M., Howarth, R. J., and Bailey, T. R., 2001. Strontium isotope strategraphy: LOWESS version 3: best fit to the marine Sr-isotope curve for 0–509 Ma and accompanying look-up table for deriving numerical age. The Journal of Geology, 109, 155–170.

    Article  Google Scholar 

  • Möller, P., Weise, S. M., Althaus, E., Bach, W., Behr, H. J., Rochardt, R., Bräuer, K., Drescher, J., Erzinger, J., Faber, E., Hansen, B. T., Horn, E. E., Huenges, E., Kämpf, H., Kessels, W., Kirsten, T., Landwehr, D., Lodemann, M., Machon, L., Peckdecker, A., Pielow, H. U., Reutel, C., Simon, K., Walter, J., Weinlich, F. H., and Zimmer, M., 1997. Paleofluids and resent fluids in the upper continental crust: results from the German Continental Deep Drilling Program (KTB). Journal of Geophysical Research, 102B8, 18233–18254.

    Article  Google Scholar 

  • Möller, P., Woith, H., Dulski, P., Lüders, V., Erzinger, J., Kämpe, H., Pekdeger, A., Hansen, B., Lodemann, M., and Banks, D., 2005. Main and trace elements in KTB-VB fluid: composition and hints to its origin. Geofluids, 5, 28–41.

    Article  Google Scholar 

  • Nier, A. O., 1940. A mass spectrometer for routine isotope abundance measurements. Review of Scientific Instruments, 11, 212–216.

    Article  Google Scholar 

  • Peckmann, P., Reimer, A., Luth, C., Hansen, B. T., Heinicke, C., Hoefs, J., and Reitner, J., 2001. Methane-derived carbonates and authigenic pyrite from the northwestern Black Sea. Marine Geology, 117, 129–150.

    Article  Google Scholar 

  • Peterman, Z. E., and Walin, B., 1999. Synopsis of strontium isotope variations in groundwater at Äspö, southern Sweden. Applied Geochemistry, 14, 939–951.

    Article  Google Scholar 

  • Peterman, Z. E., Hedge, C. E., and Tourtelot, H. A., 1970. Isotopic composition of strontium in seawater throughout Phanerozoic time. Geochimica et Cosmochimica Acta, 34, 105–120.

    Article  Google Scholar 

  • Rinderknecht, A. L., Kleinman, M. T., and Ericson, J. E., 2005. Pb enamel biomarker: deposition of pre- and postnatal Pb isotope injection in reconstructed time points along rat enamel transect. Environmental Research, 99, 169–176.

    Article  Google Scholar 

  • Rüggeberg, A., Fietzke, J., Liebetrau, V., Eisenhauer, A., Dullo, W.-C., and Freiwald, A., 2008. Stable strontium isotopes δ88/86Sr in cold-water corals – a new proxy for reconstruction of intermediate ocean water temperatures. Earth and Planetary Science Letters, 269, 569–574.

    Article  Google Scholar 

  • Rutherford, E., 1906. Radioaktive Transformations. New York: Charles Scribner, p. 287.

    Google Scholar 

  • Stacey, J. S., and Kramers, J. D., 1975. Approximation of terrestrial lead isotope evolution by a two-stage model. Earth and Planetary Science Letters, 26, 207–221.

    Article  Google Scholar 

  • Tütken, T., Eisenhauer, A., Wiegand, B., and Hansen, B. T., 2002. Glacial-interglacial cycles in Sr and Nd isotopic composition of Artic marine sediments triggered by the Svalbard/Barent Sea ice sheet. Marine Geology, 182, 351–372.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this entry

Cite this entry

Hansen, B.T. (2011). Isotopes, Radiogenic. In: Reitner, J., Thiel, V. (eds) Encyclopedia of Geobiology. Encyclopedia of Earth Sciences Series. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9212-1_124

Download citation

Publish with us

Policies and ethics