Skip to main content

Karst Ecosystems

  • Reference work entry
Encyclopedia of Geobiology

Part of the book series: Encyclopedia of Earth Sciences Series ((EESS))

Definition

Karst. A landscape in and on the Earth’s surface produced by the natural processes of solution and leaching of soluble rocks, generally carbonate rocks (e.g., limestone), in which the ensuing topography is mainly characterized by sinkholes , sinking streams, underground drainage networks, and caves .

Introduction

Karst landscapes comprise ∼15–20% of the Earth’s ice-free land surface. Because karst forms in soluble rocks, the global occurrence coincides roughly with the distribution of carbonate sedimentary rocks (e.g., Ford and Williams, 2007) (see Chapters Carbonates and Carbonate Environments). Karst landscapes link the Earth’s surface to the subsurface, being characterized by features such as sinking streams, sinkholes, caves, and extensive underground water flow systems. Caves, which can extend up to 100 m into the subsurface, are solutionally- or collapse-enlarged discontinuous openings in rock. Surface karst features neither have to be extensively developed, nor...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 449.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  • Angert, E. R., Northup, D. E., Reysenbach, A. L., Peek, A. S., Goebel, B. M., and Pace, N. R., 1998. Molecular phylogenetic analysis of a bacterial community in Sulphur River, Parker Cave, Kentucky. American Mineralogist, 83, 1583–1592.

    Google Scholar 

  • Ashmole, N. P., Orom, P., Ashmole, M. J., and Martin, J. L., 1992. Primary faunal succession in volcanic terrain: lava and cave studies on the Canary Islands. Biological Journal of the Linnean Society, 46, 207–234.

    Article  Google Scholar 

  • Barton, H. A., 2006. Introduction to cave microbiology: a review for the non-specialist. Journal of Cave and Karst Studies, 68, 43–54.

    Google Scholar 

  • Barton, H. A., and Northup, D. E., 2007. Geomicrobiology in cave environments: past, current and future perspectives. Journal of Cave and Karst Studies, 69(1), 163–178.

    Google Scholar 

  • Barton, H. A., Taylor, N. M., Kreate, M. P., Springer, A. C., Oehrle, S. A., and Bertog, J. L., 2007. The impact of host rock geochemistry on bacterial community structure in oligotrophic cave environments. International Journal of Speleology, 36, 93–104.

    Article  Google Scholar 

  • Bates, C. L., Forstner, M. R., Barnes, M. B., Whiteley, M., and McLean, R. J. C., 2006. Heterotrophic limestone-adherent biofilm isolates from the Edwards Aquifer, Texas. The Southwestern Naturalist, 51, 299–309.

    Article  Google Scholar 

  • Brigmon, R. L., Martin, H. W., Morris, T. L., Britton, G., and Zam, S. G., 1994. Biogeochemical ecology of Thiothrix spp. in underwater limestone caves. Geomicrobiology Journal, 12, 141–159.

    Article  Google Scholar 

  • Cacchio, P., Contento, R., Ercole, C., Cappuccio, G., Preit Martinez, M., and Lepidi, A., 2004. Involvement of microorganisms in the formation of carbonate speleothems in the Cervo Cave (L’Aquila-Italy). Geomicrobiology Journal, 21, 497–509.

    Article  Google Scholar 

  • Cañaveras, J. C., Cuezva, S., Sanchez-Moral, S., Lario, J., Laiz, L., Gonzalez, J. M., and Saiz-Jimenez, C., 2006. On the origin of fiber calcite crystals in moonmilk deposits. Naturwissenschaften, 93, 27–32.

    Article  Google Scholar 

  • Caumartin, V., 1963. Review of the microbiology of underground environments. Bulletin of the National Speleological Society, 25, 1–14.

    Google Scholar 

  • Chelius, M. K., and Moore, J. C., 2004. Molecular phylogenetic analysis of Archaea and bacteria in Wind Cave, South Dakota. Geomicrobiology Journal, 21, 123–134.

    Article  Google Scholar 

  • Culver, D. C., 1970. Analysis of simple cave communities I: caves as islands. Evolution, 24, 463–474.

    Article  Google Scholar 

  • Culver, D. C., and Sket, B., 2000. Hotspots of subterranean biodiversity in caves and wells. Journal of Cave and Karst Studies, 62, 11–17.

    Google Scholar 

  • Eberhard, S. M., Halse, S. A., Scanlon, M. D., Cocking, J. S., and Barron, H. J., 2005. Assessment and conservation of aquatic life in the subsurface of the Pilbara region, Western Australia. Symposium on World Subterranean Biodiversity Proceedings, pp. 69–72.

    Google Scholar 

  • Egemeier, S., 1981. Cave development by thermal waters. Bulletin of the National Speleological Society, 43, 31–51.

    Google Scholar 

  • Engel, A. S., 2007. Observations on the biodiversity of sulfidic karst habitats. Journal of Cave and Karst Studies, 69, 187–206.

    Google Scholar 

  • Engel, A. S., Porter, M. L., Kinkle, B. K., and Kane, T. C., 2001. Ecological assessment and geological significance of microbial communities from Cesspool Cave, Virginia. Geomicrobiology Journal, 18, 259–274.

    Article  Google Scholar 

  • Engel, A. S., Porter, M. L., Stern, L. A., Quinlan, S., and Bennett, P. C., 2004a. Bacterial diversity and ecosystem function of filamentous microbial mats from aphotic (cave) sulfidic springs dominated by chemolithoautotrophic “Epsilonproteobacteria”. FEMS Microbiology Ecology, 51, 31–53.

    Article  Google Scholar 

  • Engel, A. S., Stern, L. A., and Bennett, P. C., 2004b. Microbial contributions to cave formation: new insights into sulfuric acid speleogenesis. Geology, 32(5), 369–372.

    Article  Google Scholar 

  • Farnleitner, A. H., Wilhartitz, I., Ryzinska, G., Kirschner, A. K. T., Stadler, H., Burtscher, M. M., Hornek, R., Szewzyk, U., Herndl, G., and Mach, R. L., 2005. Bacterial dynamics in spring water of alpine karst aquifers indicates the presence of stable autochthonous microbial endokarst communities. Environmental Microbiology, 7, 1248–1259.

    Article  Google Scholar 

  • Fliermans, C. B., Bohlool, B. B., and Schmidt, E. L., 1974. Autecological study of the chemoautotroph Nitrobacter by immunofluorescence. Applied Microbiology, 27, 124–129.

    Google Scholar 

  • Ford, D. C., and Williams, P., 2007. Karst Hydrogeology and Geomorphology. Chichester: Wiley, p. 576.

    Google Scholar 

  • Gale, S. J., 1992. Long-term landscape evolution in Australia. Earth Surface Processes and Landforms, 17, 323–343.

    Article  Google Scholar 

  • Gibert, J., 1986. Ecologie d’un systeme karstique jurassien. Hydrogéologie, dérive animale, transits de matières, dynamique de la population de Niphargus (Crustacé Amphipode). Memoires de Biospeologie, 13, 1–379.

    Google Scholar 

  • Goldscheider, N., Hunkeler, D., and Rossi, P., 2006. Review: microbial biocenoses in pristine aquifers and an assessment of investigative methods. Hydrogeology Journal, 14, 926–941.

    Article  Google Scholar 

  • Herbert, R. A., Ranchou-Peyruse, A., Duran, R., Guyoneaud, R., and Schwabe, S., 2005. Characterization of purple sulfur bacteria from the South Andros Black Hole cave system: highlights taxonomic problems for ecological studies among the genera Allochromatium and Thiocapsa. Environmental Microbiology, 7, 1260–1268.

    Article  Google Scholar 

  • Hill, C. A., 1996. Geology of the Delaware Basin, Guadalupe, Apache, and Glass Mountains. New Mexico and West Texas: Permian Basin Section (SEPM), Publication no. 96–39, p. 480.

    Google Scholar 

  • Hose, L. D., Palmer, A. N., Palmer, M. V., Northup, D. E., Boston, P. J., and DuChene, H. R., 2000. Microbiology and geochemistry in a hydrogen-sulphide rich karst environment. Chemical Geology, 169, 399–423.

    Article  Google Scholar 

  • Howarth, F. G., 1973. The cavernicolous fauna of Hawaiian lava tubes, 1. Introduction. Pacific Insects, 15, 139–151.

    Google Scholar 

  • Howarth, F. G., 1981. Community structure and niche differentiation in Hawaiian lava tubes. In Mueller-Dombois, D., Bridges, K. W., and Carson, H. L. (eds.), Island Ecosystems: Biological Organization in Selected Hawaiian Communities. US/IBP Synthesis Series 15. Stroudsburg, PA: Hutchinson Ross, pp. 318–336.

    Google Scholar 

  • Hubbard, D. A., Herman, J. S., and Bell, P. E., 1986. The role of sulfide oxidation in the genesis of Cesspool Cave, Virginia, USA. In Comissio Organitzadora del IX Congres Internacional d’Espeleologica, ed. 9th International Congress of Speleology, Barcelona, Spain, Vol. 1, pp. 255–257.

    Google Scholar 

  • Humphreys, W. F., 1999a. Physico-chemical profile and energy fixation in Bundera Sinkhole, an anchialine remiped habitat in north-western Australia. Journal of the Royal Society of Western Australia, 82, 89–98.

    Google Scholar 

  • Humphreys, W. F., 1999b. Relict stygofaunas living in sea salt, karst and calcrete habitats in arid northwestern Australia contain many ancient lineages. In Ponder, W., and Lunney, D. (eds.), The Other 99%. The Conservation and Biodiversity of Invertebrates. Mosman 2088: Transactions of the Royal Zoological Society of New South Wales, pp. 219–227.

    Google Scholar 

  • Hutchens, E., Radajewski, S., Dumont, M. G., McDonald, I. R., and Murrell, J. C., 2004. Analysis of methanotrophic bacteria in Movile Cave by stable isotope probing. Environmental Microbiology, 6, 111–120.

    Article  Google Scholar 

  • Ikner, L. A., Toomey, R. S., Nolan, G., Neilson, J. W., Pryor, B. M., and Maier, R., 2007. Culturable microbial diversity and the impact of tourism in Kartchner Caverns, Arizona. Microbial Ecology, 53, 30–42.

    Article  Google Scholar 

  • Jasinska, E. J., Knott, B., and McComb, A. J., 1996. Root mats in ground water: a fauna-rich cave habitat. Journal of the North American Benthological Society, 15, 508–519.

    Article  Google Scholar 

  • Jones, B., 2001. Microbial activity in caves: a geological perspective. Geomicrobiology Journal, 18, 345–358.

    Article  Google Scholar 

  • Klimchouk, A. B., 2007. Hypogene Speleogenesis: Hydrogeological and Morphogenetic Perspective. Carlsbad, NM: National Cave and Karst Research Institute, (Special Paper no. 1), p. 106.

    Google Scholar 

  • Levelle, R. J., Fyfe, W. S., and Longstaffe, F. J., 2000. Geomicrobiology of carbonate-silicate microbialites from Hawaiian basaltic sea caves. Chemical Geology, 169, 339–355.

    Article  Google Scholar 

  • Longley, G., 1981. The Edwards Aquifer - Earth’s most diverse groundwater ecosystem. International Journal of Speleology, 11, 123–128.

    Article  Google Scholar 

  • Macalady, J. L., Lyon, E. H., Koffman, B., Albertson, L. K., Meyer, K., Galdenzi, S., and Mariani, S., 2006. Dominant microbial populations in limestone-corroding stream biofilms, Frasassi Cave system, Italy. Applied and Environmental Microbiology, 72, 5596–5609.

    Article  Google Scholar 

  • Macalady, J. L., Jones, D. S., and Lyon, E. H., 2007. Extremely acidic, pendulous cave wall biofilms from the Frasassi cave system, Italy. Environmental Microbiology, 13, 1402–1414.

    Article  Google Scholar 

  • Mahler, B. J., Personne, J. C., Lods, G. F., and Drogue, C., 2000. Transport of free and particulate-associated bacteria in karst. Journal of Hydrology, 238, 179–193.

    Article  Google Scholar 

  • Northup, D. E., and Lavoie, K., 2001. Geomicrobiology of caves: a review. Geomicrobiology Journal, 18, 199–222.

    Article  Google Scholar 

  • Northup, D. E., and Welbourn, W. C., 1997. Life in the twilight zone: lava tube ecology. New Mexico Bureau of Mines & Mineral Resources Bulletin, 156, 69–82.

    Google Scholar 

  • Northup, D. E., Dahm, C. N., Melim, L. A., Spilde, M. N., Crossey, L. J., Lavoie, K. H., Mallory, L. M., Boston, P. J., Cunningham, K. I., and Barns, S. M., 2000. Evidence for geomicrobiological interactions in Guadalupe caves. Journal of Cave and Karst Studies, 62, 80–90.

    Google Scholar 

  • Northup, D. E., Barns, S. M., Yu, L. E., Spilde, M. N., Schelble, R. T., Dano, K. E., Crossey, L. J., Connolly, C. A., Boston, P. J., Natvig, D. O., and Dahm, C. N., 2003. Diverse microbial communities inhabiting ferromanganese deposits in Lechuguilla and Spider Caves. Environmental Microbiology, 5, 1071–1086.

    Article  Google Scholar 

  • Northup, D. E., Connolly, C. A., Trent, A., Peck, V. M., Spilde, M. N., Welbourn, W. C., and Natvig, D. O., 2008. The nature of bacterial communities in Four Windows Cave, El Malpais National Monument, New Mexico, USA. AMCS Bulletin, 19, 119–125.

    Google Scholar 

  • Olson, R. A., and Thompson, D. B., 1988. Scanning electron microscopy and energy dispersive X-ray analysis of artificial and natural substrates from the Phantom Flowstone of Sulphur River in Parker Cave, Kentucky. National Speleological Society Bulletin, 50, 47–53.

    Google Scholar 

  • Onac, B. P., Tysseland, M., Bengeanu, M., and Hofenpradli, A., 1997. Deposition of black manganese and iron-rich sediments in Vântului Cave (Romania). In Jeannin, P.-Y.  (ed.), Proceedings of the 12th International Congress of Speleology. International Union of Speleology, pp. 235–238.

    Google Scholar 

  • Opsahl, S. P., and Chanton, J. P., 2006. Isotopic evidence for methane-based chemosynthesis in the Upper Floridan aquifer food web. Oecologia, 150, 89–96.

    Article  Google Scholar 

  • Palmer, A. N., 1991. Origin and morphology of limestone caves. Geological Society of America Bulletin, 103, 1–21.

    Article  Google Scholar 

  • Palmer, A. N., 1995. Geochemical models for the origin of macroscopic solution porosity in carbonate rocks. In Budd, D. A., Saller, A. H., and Harris, P. M. (eds.), Unconformities and Porosity in Carbonate Strata. Tulsa: AAPG Memoir 63, pp. 77–101.

    Google Scholar 

  • Palmer, A. N., 2007. Cave Geology. Dayton, OH: Cave Books, p. 454.

    Google Scholar 

  • Peck, S. B., 1986. Bacterial deposition of iron and manganese oxides in North American caves. Bulletin of the National Speleological Society, 48, 26–30.

    Google Scholar 

  • Pohlman, J. W., Iliffe, T. M., and Cifuentes, L. A., 1997. A stable isotope study of organic cycling and the ecology of an anchialine cave ecosystem. Marine Ecology Progress Studies, 155, 17–27.

    Article  Google Scholar 

  • Polyak, V. J., McIntosh, W. C., Guven, N., and Provencio, P., 1998. Age and origin of Carlsbad Cavern and related caves from 40Ar/39Ar of alunite. Science, 279, 1919–1922.

    Article  Google Scholar 

  • Por, F. D., 2007. Ophel: a groundwater biome based on chemoautotrophic resources. The global significance of the Ayyalon cave finds, Israel. Hydrobiologia, 592, 1–10.

    Article  Google Scholar 

  • Porter, M. L., 1999. Ecosystem Energetics of Sulfidic Karst. Masters Thesis, University of Cincinnati, Cincinnati, OH, p. 52.

    Google Scholar 

  • Pronk, M., Goldscheider, N., and Zopfi, J., 2006. Dynamics and interaction of organic carbon, turbidity and bacteria in a karst aquifer system. Hydrogeology Journal, 14, 473–484.

    Article  Google Scholar 

  • Rusterholtz, K., and Mallory, L. M., 1994. Density, activity and diversity of bacteria indigenous to a karstic aquifer. Microbial Ecology, 28, 79–99.

    Article  Google Scholar 

  • Sarbu, S. M., Kane, T. C., and Kinkle, B. K., 1996. A chemoautotrophically based cave ecosystem. Science, 272, 1953–1955.

    Article  Google Scholar 

  • Schabereiter-Gurtner, C., Saiz-Jimenez, C., Pinar, G., Lubitz, W., and Rolleke, S., 2002a. Phylogenetic 16S rRNA analysis reveals the presence of complex and partly unknown bacterial communities in Tito Bustillo Cave, Spain, and on its Palaeolithic paintings. Environmental Microbiology, 4, 392–400.

    Article  Google Scholar 

  • Schabereiter-Gurtner, C., Saiz-Jimenez, C., Piñar, G., Lubitz, W., and Rölleke, S., 2002b. Altamira Cave Paleolithic paintings harbour partly unknown bacterial communities. FEMS Microbiology Letters, 211, 7–11.

    Article  Google Scholar 

  • Schabereiter-Gurtner, C., Saiz-Jimenez, C., Piñar, G., Lubitz, W., and Rölleke, S., 2004. Phylogenetic diversity of bacteria associated with Paleolithic paintings and surrounding rock walls in two Spanish caves (Llonín and La Garma). FEMS Microbiology Ecology, 47, 235–247.

    Article  Google Scholar 

  • Simon, K. S., 2000. Organic Matter Dynamics and Trophic Structure in Karst Groundwater. Ph.D. Dissertation, Virginia Polytechnic Institute and State University, Blacksburg, VA, p. 95.

    Google Scholar 

  • Simon, K. S., Benfield, E. F., and Macko, S. A., 2003. Food web structure and the role of epilithic biofilms in cave streams. Ecology, 84, 2395–2406.

    Article  Google Scholar 

  • Sket, B., 1999. The nature of biodiversity in hypogean waters and how it is endangered. Biodiversity Conservation, 8, 1319–1338.

    Article  Google Scholar 

  • Stoessell, R. K., Moore, Y. H., and Coke, J. G., 1993. The occurrence and effect of sulfate reduction and sulfide oxidation on coastal limestone dissolution in Yucatan cenotes. Ground Water, 31, 566–575.

    Article  Google Scholar 

  • van Beynen, P., and Townsend, K., 2005. A disturbance index for karst environments. Environmental Management, 36, 101–116.

    Article  Google Scholar 

  • Vlasceanu, L., 1999. Thriving in the Dark: The Microbiology of Two Chemoautotrophically-based Groundwater Ecosystems. Ph.D. Dissertation, University of Cincinnati, Cincinnati, OH, p. 171.

    Google Scholar 

  • Vlasceanu, L., Popa, R., and Kinkle, B., 1997. Characterization of Thiobacillus thioparus LV43 and its distribution in a chemoautotrophically based groundwater ecosystem. Applied and Environmental Microbiology, 63, 3123–3127.

    Google Scholar 

  • Vlasceanu, L., Sarbu, S. M., Engel, A. S., and Kinkle, B. K., 2000. Acidic cave-wall biofilms located in the Frasassi Gorge, Italy. Geomicrobiology Journal, 17, 125–139.

    Article  Google Scholar 

  • White, W. B., 1997. Thermodynamic equilibrium, kinetics, activation barriers, and reaction mechanisms for chemical reactions in Karst Terrains. Environmental Geology, 30, 46–58.

    Article  Google Scholar 

  • White, W. B., and Culver, D. C., 2000. Cave, definition of. In Culver, D. C.,  and White, W. B.  (eds.), Encyclopedia of Caves. Burlington, MA: Elsevier, pp. 81–85.

    Google Scholar 

  • Zimmermann, J., Gonzalez, J. M., Saiz-Jimenez, C., and Ludwig, W., 2005. Detection and phylogenetic relationships of highly diverse uncultured acidobacterial communities in Altamira Cave using 23S rRNA sequence analyses. Geomicrobiology Journal, 22, 379–388.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this entry

Cite this entry

Engel, A.S. (2011). Karst Ecosystems. In: Reitner, J., Thiel, V. (eds) Encyclopedia of Geobiology. Encyclopedia of Earth Sciences Series. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9212-1_125

Download citation

Publish with us

Policies and ethics