Skip to main content

Banded Iron Formations

  • Reference work entry
Encyclopedia of Geobiology

Synonyms

BIFs

Definition

Sedimentary deposits of alternating iron-rich (∼20–40% Fe) and iron-poor, siliceous (∼40–50% SiO2) mineral layers that primarily precipitated throughout much of the late Archean (2.7–2.5 Ga) and Paleoproterozoic (2.5–1.8 Ga), but then remerged in the Neoproterozoic (∼0.8 Ga).

BIF characterization, mineralogy, and distribution

BIFs are globally distributed, with some of the larger formations being those of the Hamersley range in Australia and the Transvaal Supergroup in South Africa (Figures 1 and 2). Other major BIFs include Krivoy Rog Supergroup, Ukraine (2.2 Ga); Labrador Trough, Canada; Lake Superior Region, USA; Gunflint and Biwabik, North America (2.2–2.0 Ga), Carajás Formation (2.6 Ga) and Urucum Region, Brazil (0.8 Ga).

Banded Iron Formations. Figure 1
figure 1

Appearance of BIFs in geological time and marked as Algoma and Superior types.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 449.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  • Alexander, B. W., Bau, M., Andersson, P., and Dulski, P., 2008. Continentally-derived solutes in shallow Archean seawater: rare earth element and Nd isotope evidence in iron formation from the 2.9 Ga Pongola Supergroup, South Africa. Geochimica et Cosmochimica Acta, 72, 378–394.

    Article  Google Scholar 

  • Altermann, W., and Kazmierczak, J., 2003. Archean microfossils: a reappraisal of early life on Earth. Research in Microbiology, 154, 611–617.

    Article  Google Scholar 

  • Altermann, W., and Schopf, J. W., 1995. Microfossils from the Neoarchean Campbell Group, Griqualand West Sequence of the Transvaal Supergroup, and their paleoenvironmental and evolutionary implications. Precambrian Research, 75, 65–90.

    Article  Google Scholar 

  • Anbar, A. D., Duan, Y., Lyons, T. W., Arnold, G. L., Kendall, B., Creaser, R. A., Kaufman, A. J., Gordon, G. W., Scott, C., Garvin, J., and Buick, R., 2007. A whiff of oxygen before the Great Oxidation event? Science, 317, 1903–1906.

    Article  Google Scholar 

  • Balci, N., Bullen, T. D., Witte-Lien, K., Shanks, W. C., Motelica, M., and Mandernack, K. W., 2006. Iron isotope fractionation during microbially stimulated Fe(II) oxidation and Fe(III) precipitation. Geochimica et Cosmochimica Acta, 70, 622–639.

    Article  Google Scholar 

  • Barns, S. M., and Nierzwicki-Bauer, S. A., 1997. Microbial diversity in ocean, surface and subsurface environments. In Banfield, J. F., and Nealson, K. H.  (eds.), Geomicrobiology: Interactions Between Microbes and Minerals. Washington, DC: Mineralogical Society of America, pp. 35–79.

    Google Scholar 

  • Bau, M., and Möller, P., 1993. Rare earth element systematics of the chemically precipitated component in Early Precambrian iron-formations and the evolution of the terrestrial atmosphere-hydrosphere-lithosphere system. Geochimica et Cosmochimica Acta, 57, 2239–2249.

    Article  Google Scholar 

  • Baur, M. E., Hayes, J. M., Studley, S. A., and Walter, M. R., 1985. Millimeter-scale variations of stable isotope abundances in carbonates from banded iron formations in the Hamersley Group of Western Australia. Economic Geology, 80, 270–282.

    Article  Google Scholar 

  • Beukes, N. J., 1973. Precambrian iron-formations of Southern Africa. Economic Geology,  68, 960–1004.

    Article  Google Scholar 

  • Beukes, N., 2004. Early options in photosynthesis. Nature, 431, 522–523.

    Article  Google Scholar 

  • Beukes, N. J., and Klein, C., 1992. Models for iron-formation deposition. In Schopf, J. W., and Klein, C. (eds.), The Proterozoic Biosphere: A Multidisciplinary Study. Cambridge: University of Cambridge.

    Google Scholar 

  • Bosak, T., Greene, S. E., and Newman, D. K., 2007. A likely role for anoxygenic photosynthetic microbes in the formation of ancient stromatolites. Geobiology, 5(2), 119–126.

    Article  Google Scholar 

  • Brasier, M. D., Green, O. R., Jephcoat, A. P., Kleppe, A. K., Van Kranendonk, M. J., Lindsay, J. F., Steele, A., and Grassineau, N. V., 2002. Questioning the evidence for Earth’s oldest fossils. Nature, 416, 76–81.

    Article  Google Scholar 

  • Braterman, P. S., Cairns-Smith, A. G., and Sloper, R. W., 1983. Photo-oxidation of hydrated Fe2 + – significance for banded iron formations. Nature, 303, 163–164.

    Article  Google Scholar 

  • Brocks, J. J., 2005. Biomarker evidence for green and purple sulphur bacteria in a stratified Palaeoproterozoic sea. Nature, 437, 866–870.

    Article  Google Scholar 

  • Brocks, J. J., Logan, G. A., Buick, R., and Summons, R. E., 1999. Archean molecular fossils and the early rise of eukaryotes. Science, 285, 1033–1036.

    Article  Google Scholar 

  • Brown, A. D., Gross, G. A., and Sawicki, J. A., 1995. A review of the microbial geochemistry of banded iron formations. The Canadian Mineralogist, 33, 1321–1333.

    Google Scholar 

  • Buick, R., 1988. Carbonaceous filaments from North Pole, West Australia: are they fossil bacteria in Archean stromatolites? A reply. Precambrian Research, 39, 311–317.

    Article  Google Scholar 

  • Buick, R., 1992. The antiquity of oxygenic photosynthesis: evidence for stromatolites in sulphate-deficient Archaean lakes. Science, 255, 74–77.

    Article  Google Scholar 

  • Bullen, T. D., White, A. F., Childs, C. W., Vivit, D. V., and Schulz, M. J., 2001. Demonstration of significant abiotic iron isotope fractionation in nature. Geology, 29(8), 699–702.

    Article  Google Scholar 

  • Cairns-Smith, A. G., 1978. Precambrian solution photochemistry, inverse segregation, and banded iron formations. Nature, 276, 807–808.

    Article  Google Scholar 

  • Campbell, A. C., Palmer, M. R., Klinkhammer, G. P., Bowers, T. S., Edmond, J. M., Lawrence, J. R., Casey, J. F., Thompson, G., Humphris, S., Rona, P., and Karson, J. A., 1988. Chemistry of hot springs on the mid-Atlantic ridge. Nature, 335, 514–519.

    Article  Google Scholar 

  • Canfield, D. E., 1998. A new model for Proterozoic ocean chemistry. Nature, 396, 450–453.

    Article  Google Scholar 

  • Cloud, P., 1965. Significance of the Gunflint (Precambrian) microflora. Science, 148, 27–35.

    Article  Google Scholar 

  • Cloud, P., 1968. Atmospheric and hydrospheric evolution on the primitive Earth. Science, 160, 729–736.

    Article  Google Scholar 

  • Cloud, P., 1972. A working model of the primitive earth. American Journal of Science, 272, 537–548.

    Article  Google Scholar 

  • Cloud, P., 1973. Paleoecological significance of the banded iron-formation. Economic Geology, 68, 1135–1143.

    Article  Google Scholar 

  • Croal, L. R., Johnson, C. M., Beard, B. L., and Newman, D. K., 2004. Iron isotope fractionation by Fe(II)-oxidizing photoautotrophic bacteria. Geochimica et Cosmochimica Acta, 68, 1227–1242.

    Article  Google Scholar 

  • Drever, J. I., 1974. Geochemical model for the origin of Precambrian banded iron formations. Geological Society of America Bulletin, 85, 1099–1106.

    Article  Google Scholar 

  • Ehrenreich, A., and Widdel, F., 1994. Anaerobic oxidation of ferrous iron by purple bacteria, a new type of phototrophic metabolism. Applied and Environmental Microbiology, 60(12), 4517–4526.

    Google Scholar 

  • Ewers, W. E., and Morris, R. C., 1981. Studies of the Dales Gorge member of the Brockman iron formation, Western Australia. Economic Geology, 76, 1929–1953.

    Article  Google Scholar 

  • Farquhar, J., Bao, H., and Thiemens, M., 2000. Atmospheric influence of Earth’s earliest sulfur cycle. Science, 289, 756–758.

    Article  Google Scholar 

  • Fischer, W. W., and Pearson, A., 2007. Hypotheses for the origin and early evolution of triterpenoid cyclases. Geobiology, 5, 19–34.

    Google Scholar 

  • Francois, L. M., 1986. Extensive deposition of banded iron formations was possible without photosynthesis. Nature, 320, 352–354.

    Article  Google Scholar 

  • García-Ruiz, J. M., Hyde, S. T., Carnerup, A. M., Christy, A. G., Van Kranendonk, M. J., and Welham, N. J., 2003. Self-assembled silica-carbonate structures and detection of ancient microfossils. Science, 302(4), 1194–1197.

    Article  Google Scholar 

  • Garrels, R. M., 1987. A model for the deposition of the microbanded Precambrian iron formations. American Journal of Science, 287, 81–105.

    Article  Google Scholar 

  • Garrels, R. M., Perry, E. A., and MacKenzie, F. T., 1973. Genesis of Precambrian iron-formations and the development of atmospheric oxygen. Economic Geology, 68, 1173–1179.

    Article  Google Scholar 

  • Gole, M. J., and Klein, C., 1981. Banded iron formations through much of Precambrian time. Journal of Geology, 89, 169–183.

    Article  Google Scholar 

  • Gross, G. A., 1965. Geology of iron deposits in Canada, Vol. 1. General geology and evaluation of iron deposits. Geological Survey of Canada Economic Report, 22(1), 181 p.

    Google Scholar 

  • Gross, G. A., 1980. A classification of iron formations based on depositional environments. Canadian Mineralogist, 18, 215–222.

    Google Scholar 

  • Han, T. M., 1978. Microstructures of magnetite as guides to its origin in some Precambrian iron-formations. Fortschritte der Mineralogie, 56(1), 105–142.

    Google Scholar 

  • Hartman, H., 1984. The evolution of photosynthesis and microbial mats: a speculation on banded iron formations. In Cohen, Y., Castenholz, R.W., and Halvorson, H.O. (eds.), Microbial Mats: Stromatolites. New York: Alan Liss, pp. 451–453.

    Google Scholar 

  • Härtner, T., Straub, K. L., and Kannenberg, E., 2005. Occurrence of hopanoid lipids in anaerobic geobacter species. FEMS Microbiology Letters, 243, 59–64.

    Article  Google Scholar 

  • Hayes, J. M., 1983. Geochemical evidence bearing on the origin of aerobiosis, a speculative hypothesis. In Schopf, J.W. (ed.), Earth’s Earliest Biosphere, Its Origin and Evolution. Princeton, NJ: Princeton University Press, pp. 291–301.

    Google Scholar 

  • Heising, S., Richter, L., Ludwig, W., and Schink, B., 1999. Chlorobium ferrooxidans sp. nov., a phototrophic green sulfur bacterium that oxidizes ferrous iron in coculture with a Geospirillum sp. strain. Arch Microbiology, 172, 116–124.

    Article  Google Scholar 

  • Hoefs, J., 1997. Stable Isotope Geochemistry, 4th edn. Heidelberg: Springer.

    Book  Google Scholar 

  • Holland, H. D., 1973. The oceans: a possible source of iron in iron-formations. Economic Geologist, 68, 1169–1172.

    Article  Google Scholar 

  • Holm, N. G., 1989. The 13C/12C ratios of siderite and organic matter of a modern metalliferous hydrothermal sediment and their implications for banded iron formations. Chemical Geology, 77, 41–45.

    Article  Google Scholar 

  • Huston, D. L., and Logan, G. A., 2004. Barite, BIFs and bugs: evidence for the evolution of the Earth’s early hydrosphere. Earth and Planetary Science Letters, 6994, 1–15.

    Google Scholar 

  • Icopini, G. A., Anbar, A. D., Ruebush, S. R., Tien, M., and Brantley, S. L., 2004. Iron isotope fractionation during microbial reduction of iron. Geology, 32(3), 205–208.

    Article  Google Scholar 

  • Isley, A. E., 1995. Hydrothermal plumes and the delivery of iron to banded iron formation. Journal of Geology, 103, 169–185.

    Article  Google Scholar 

  • Jacobsen, S. B., and Pimentel-Klose, M. R., 1988. A Nd isotopic study of the hamersley and michipicoten banded iron formations: the source of REE and Fe in Archean oceans. Earth and Planetary Science Letters, 87, 29–44.

    Article  Google Scholar 

  • James, H. L., 1954. Sedimentary facies of iron-formation. Economic Geology, 49(3), 236–294.

    Article  Google Scholar 

  • Jiao, Y., Kappler, A., Croal, L., and Newman, D. K., 2005. Isolation and characterization of a genetically tractable photoautotrophic Fe(II)-oxidizing bacterium, Rhodopseudomonas palustris strain TIE-1. Applied and Environmental Microbiology, 71(8), 1–10.

    Article  Google Scholar 

  • Johnson, C. M., and Beard, B. L., 2005. Biogeochemical cycling of iron isotopes. Science, 309, 1025–1027.

    Article  Google Scholar 

  • Johnson, C. M., Beard, B. L., Beukes, N. J., Klein, C., and O’Leary, J. M., 2003. Ancient geochemical cycling in the Earth as inferred from Fe isotope studies of banded iron formations from the Transvaal Craton. Contributions to Mineralogy and Petrology, 144, 523–547.

    Article  Google Scholar 

  • Johnson, C. M., Beard, B. L., Klein, C., Beukes, N. J., and Roden, E. E., 2008. Iron isotopes constrain biologic and abiologic processes in banded iron formation genesis. Geochimica et Cosmochimica Acta, 72, 151–169.

    Article  Google Scholar 

  • Johnson, C. M., Beard, B. L., Roden, E. E., Newman, D. K., and Nealson, K. H., 2004. Isotopic constraints on biogeochemical cycling of Fe. Reviews in Mineralogy and Geochemistry, 55, 359–408.

    Article  Google Scholar 

  • Kappler, A., Pasquero, C., Konhauser, K. O., and Newman, D. K., 2005. Deposition of banded iron formations by anoxygenic phototrophic Fe(II)-oxidizing bacteria. Geology, 33, 865–868.

    Article  Google Scholar 

  • Kirschvink, J. L., 1992. Late proterozoic low-latitude global glaciation: The snowball Earth. In Schopf, J. W., and Klein, C. (eds.), The Proterozoic Biosphere: A Multidisciplinary Study. Cambridge: Cambridge University Press, pp. 51–52.

    Google Scholar 

  • Klein, C., 2005. Some Precambrian banded iron formations (BIFs) from around the world: their age, geologic setting, mineralogy, metamorphism, geochemistry, and origin. The American Mineralogist, 90, 1473–1499.

    Article  Google Scholar 

  • Klein, C., and Beukes, N. J., 1992. Time distribution, stratigraphy, and sedimentologic setting, and geochemistry of Precambrian iron-formations. In Schopf, J. W., and Klein, C. (eds.), The Proterozoic Biosphere: A Multidisciplinary Study. Cambridge: University of Cambridge, pp. 139–146.

    Google Scholar 

  • Konhauser, K., Hamade, T., Raiswell, R., Morris, R. C., Ferris, F. G., Southam, G., and Canfield, D. E., 2002. Could bacteria have formed the Precambrian banded iron formations? Geology, 30, 1079–1082.

    Article  Google Scholar 

  • Konhauser, K., Newman, D. K., and Kappler, A., 2005. The potential significance of microbial Fe(III) reduction during deposition of Precambrian banded iron formations. Geobiology, 3, 167–177.

    Article  Google Scholar 

  • Konhauser, K. O., Amskold, L., Lalonde, S. V., Posth, N. R., Kappler, A., and Anbar, A., 2007. Decoupling photochemical Fe(II) oxidation from shallow-water deposition. Earth and Planetary Science Letters, 258, 87–100.

    Article  Google Scholar 

  • Kopp, R. E., Kirschvink, J. L., Hilburn, I. A., and Nash, C. Z., 2005. The Paleoproterozoic snowball Earth: a climate disaster triggered by the evolution of oxygenic photosynthesis. Proceedings of the National Academy of Science, 102(32), 11131–11136.

    Article  Google Scholar 

  • Krapež, B., Barley, M. E., and Pickard, A. L., 2003. Hydrothermal and resedimented origins of the precursor sediments to banded iron formation: sedimentological evidence from the Early Paleoproterozoic Brockman supersequence of Western Australia. Sedimentology, 50, 979–1011.

    Article  Google Scholar 

  • Lovley, D. R., Kashefi, K., Vargas, M., Tor, J. M., and Blunt-Harris, E. L., 2000. Reduction of humic substances and Fe(III) by hyperthermophilic microorganisms. Chemical Geology, 169, 289–298.

    Article  Google Scholar 

  • Maliva, R. G., Knoll, A. H., and Simonson, B. M., 2005. Secular change in the Precambrian silica cycle: insights from chert petrology. Geological Society of America Bulletin, 117, 835–845.

    Article  Google Scholar 

  • Morris, R. C., 1993. Genetic modelling for banded iron-formation of the Hamersley Group, Pilbara Craton, Western Australia. Precambrian Research, 60, 243–286.

    Article  Google Scholar 

  • Morris, R. C., and Horwitz, R. C., 1983. The origin of the iron-formation-rich Hamersley Group of Western Australia – deposition on a platform. Precambrian Research, 21, 273–297.

    Article  Google Scholar 

  • Olson, J. M., and Blankenship, R. E., 2004. Thinking about the evolution of photosynthesis. Photosynthesis Research, 80, 373–386.

    Article  Google Scholar 

  • Paerl, H. W., Steppe, T. F., and Reid, R. P., 2001. Bacterially mediated precipitation in marine stromatolites. Environmental Microbiology, 3, 123–130.

    Article  Google Scholar 

  • Papineau, D., Walker, J. J., Mojzsis, S. J., and Pace, N. R., 2005. Composition and structure of microbial communities from stromatolites of Hamelin Pool in Shark Bay, Western Australia. Applied and Environmental Microbiology, 71(8), 4822–4832.

    Article  Google Scholar 

  • Pasteris, J. D., and Wopenka, B., 2003. Necessary, but not sufficient Raman identification of disordered carbon as a signature of ancient life. Astrobiology, 3, 727–738.

    Article  Google Scholar 

  • Perry, E. C., Tan, F. C., and Morey, G. B., 1973. Geology and stable isotope geochemistry of the Biwabik iron formation, Northern Minnesota. Economic Geology, 68, 1110–1125.

    Article  Google Scholar 

  • Posth, N. R., Hegler, F., Konhauser, K. O. and Kappler, A., 2008. Alternating Si and Fe deposition caused by temperature fluctuations in Precambrian oceans. Nature Geoscience, 1(10), 703–708.

    Article  Google Scholar 

  • Posth, N. R., Konhauser, K. O., and Kappler, A., 2008. Microbio-logical processes in BIF deposition. In Glenn, C., and Jarvis, I. (eds.), Authigenic Minerals: Sedimentology, Geochemistry, Origins, Distribution and Applications. J. Sedimentology IAS Special Publication Series, in press.

    Google Scholar 

  • Rashby, S. E., Sessions, A. L., Summons, R. E., and Newman, D. K., 2007. Biosynthesis of 2-methylbacteriohopanepolyols by an anoxygenic phototroph. Proceedings of National Academy of Sciences of the United States of America, 104(38), 15099–15104.

    Article  Google Scholar 

  • Rasmussen, B., and Buick, R., 1999. Redox state of the Archean atmosphere: evidence from detrital heavy metals in ca. 3250–2750 Ma sandstones from the Pilbara Craton. Australia. Geology, 27, 115–118.

    Article  Google Scholar 

  • Rothman, D. H., Hayes, J. M., and Summons, R. E., 2003. Dynamics of the Neoproterozoic carbon cycle. Proceedings of National Academy of Sciences of the United States of America, 100, 8124–8129.

    Article  Google Scholar 

  • Rouxel, O. J., Bekker, A., and Edwards, K. J., 2005. Iron isotope constraints on the Archaen and Paleoproterozoic. Science, 307, 1088–1091.

    Article  Google Scholar 

  • Runnegar, B., 1991. Precambrian oxygen levels estimated from the biochemistry and physiology of early eukaryotes. Palaeogeography, Palaeoclimatology, Palaeoecology, 71, 97–111.

    Article  Google Scholar 

  • Rye, R., and Holland, H. D., 1998. Paleosols and the evolution of atmospheric oxygen: a critical review. American Journal of Science, 298, 621–672.

    Article  Google Scholar 

  • Schidlowski, M., 2000. Carbon isotopes and microbial sediments. In Riding, R., and Awramik, S.M. (eds.), Microbial Sediments. Berlin: Springer, pp. 84–95.

    Google Scholar 

  • Schopf, J. W., 1993. Microfossils of the Early Archean Apex Chert: new evidence of the antiquity of life. Science, 260, 640–646.

    Article  Google Scholar 

  • Schopf, J. W., and Packer, B. M., 1987. Early Archean (3.3-billion to 3.5-billion-year-old) microfossils from Warrawoona Group, Australia. Science, 237, 70–73.

    Article  Google Scholar 

  • Schopf, J. W., Kudryavtsev, A. B., Agresti, D. G., Wdowiak, T. J., and Czaja, A. D., 2002. Laser-Raman imagery of Earth’s earliest fossils. Nature, 416, 73–76.

    Article  Google Scholar 

  • Siever, R., 1992. The silica cycle in the Precambrian. Geochimica et Cosmochimica Acta, 56, 3265–3272.

    Article  Google Scholar 

  • Simonson, B. M., 1985. Sedimentological constraints on the origins of Precambrian iron-formations. Geological Society of America Bulletin, 96, 244–252.

    Article  Google Scholar 

  • Straton, S., Amskold, L., Anbar, A., and Konhauser, K. O., 2006. Iron isotope fractionation during Fe(II) photo-oxidation. Astrobiology Science Conference 4, Washington, DC.

    Google Scholar 

  • Straub, K. L., Rainey, F. R., and Widdel, F., 1999. Rhodovulum iodosum sp. nov. and Rhodovulum robiginosum sp. nov., two new marine phototrophic ferrous-iron-oxidizing purple bacteria. International Journal of Systematic Bacteriology, 49, 729–735.

    Article  Google Scholar 

  • Strauss, H., 2003. Sulphur isotopes and the early Archean sulphur cycle. Precambrian Research, 126, 349–361.

    Article  Google Scholar 

  • Strauss, H., Des Marais, D. J., Hayes, J. M., and Summons, R. E., 1992. Concentrations of organic carbon and maturites and elemental compositions of kerogens. In Schopf, J.W., and Klein, C. (eds.), The Proterozoic Biosphere. Cambridge: Cambridge University Press, pp. 95–99.

    Google Scholar 

  • Summons, R. E., Jahnke, L. L., Hope, J. M., and Logan, G. A., 1999. 2-methylhopanoids as biomarkers for cyanobacterial oxygenic photosynthesis. Nature, 400, 554–557.

    Article  Google Scholar 

  • Tice, M. M., and Lowe, D. R., 2004. Photosynthetic microbial mats in the 3,416 Myr old ocean. Nature, 431, 549–552.

    Article  Google Scholar 

  • Trendall, A. F., 1968. Three great basins of Precambrian banded iron formation deposition: a systematic comparison. Geological Society of America Bulletin, 79, 1527–1544.

    Article  Google Scholar 

  • Trendall, A. F., 2002. The significance of iron-formation in the Precambrian stratigraphic record. International Association of Sedimentologists. Special Publication, 33, 33–66.

    Google Scholar 

  • Trendall, A. F., and Blockely, J. G., 1970. The iron formations of the Precambrian Hamersley Group, Western Australia; with special reference to the associated crocidolite. Western Australia Geological Survey Bulletin, 119, 336.

    Google Scholar 

  • Van Kranendonk, M. J., 2006. Volcanic degassing, hydrothermal circulation and the flourishing of early life on Earth: a review of the evidence from c. 3490–3240 Ma rocks of the Pilbara Supergroup, Pilbara Craton, Western Australia. Earth Science Reviews, 74, 197–240.

    Article  Google Scholar 

  • Vargas, M., Kashefi, K., Blunt-Harris, E. L., and Lovely, D. R., 1998. Microbiological evidence for Fe(III) reduction on early Earth. Nature, 395, 65–67.

    Article  Google Scholar 

  • Visscher, P. T., Reid, R. P., Bebout, B. M., Hoeft, S. E., Macintyre, I. G., and Thompson, J. A., 1998. Formation of lithified micritic laminae in modern marine stromatolites (Bahamas): the role of sulfur cycling. American Mineralogist, 83, 1482–1493.

    Google Scholar 

  • Walker, J. C. G., 1984. Suboxic diagenesis in banded iron formations. Nature, 309, 340–342.

    Article  Google Scholar 

  • Widdel, F., Schnell, S., Heising, S., Ehrenreich, A., Assmus, B., and Schink, B., 1993. Ferrous iron oxidation by anoxygenic phototrophic bacteria. Nature, 362, 834–836.

    Article  Google Scholar 

  • Wright, D. T., and Altermann, W., 2000. Microfacies development in Late Archaean Stromatolites and oolites of the Campbellrand Subgroup, South Africa. In Insalco, E., Skelton, P. W., and Palmer, T. J. (eds.), Carbonate Platform Systems: Components and Interactions. London: Geological Society, Special Publication, 178, 51–70.

    Google Scholar 

  • Yamaguchi, K. E., Johnson, C. M., Beard, B. L., and Ohmoto, H., 2005. Biogeochemical cycling of iron in the Archean Paleoproterozoic Earth: constraints from iron isotope variations in sedimentary rocks from the Kaapvaal and Pilbara Cratons. Chemical Geology, 218, 135–169.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this entry

Cite this entry

Posth, N.R., Konhauser, K.O., Kappler, A. (2011). Banded Iron Formations. In: Reitner, J., Thiel, V. (eds) Encyclopedia of Geobiology. Encyclopedia of Earth Sciences Series. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9212-1_19

Download citation

Publish with us

Policies and ethics