Skip to main content

Black Shales

  • Reference work entry
Encyclopedia of Geobiology

Part of the book series: Encyclopedia of Earth Sciences Series ((EESS))

Definition

Most modern and ancient aquatic (marine, brackish, and lacustrine) environments were sufficiently oxygenated to permit colonization by numerous benthic, planktic, and nectic organisms. Due to excess oxygen the biologically produced organic matter is rapidly degraded. The sediments formed thereby exhibit only very low amounts of organic matter.

In contrast, very high rates of primary production and/or stagnant water bodies result in black shale sedimentation, which is associated with oxygen depletion or even lack of oxygen within the substrate and  to some extent also within the water column. Degradation of organic matter is incomplete, partly by anaerobic bacteria, causing strong enrichment of organic matter in sediments. Black shales therefore commonly exhibit excellent preservation of organic molecules and mineralized soft tissues and hard parts of organisms.

The importance of black shales for scientists and the society are twofold. Black shales serve as source rocks for...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 449.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  • Arouri, K. R., Greenwood, P. F., and Walter, M. R., 2000. Biological affinities of Neoproterozoic acritarchs from Australia: microscopic and chemical characterisation. Organic Geochemistry, 31, 75–89.

    Article  Google Scholar 

  • Bahr, A., Lamy, F., Arz, H. W., and Wefer, G., 2005. Late glacial to Holocene climate and sedimentation history in the NW Black Sea. Marine Geology, 214, 309–322.

    Article  Google Scholar 

  • Bahr, A., Arz, H. W., Lamy, F., and Wefer, G., 2006. Late glacial to Holocene paleoenvironmental evolution of the Black Sea, reconstructed with stable oxygen isotope records obtained on ostracod shells. Earth and Planetary Science Letters, 241, 863–875.

    Article  Google Scholar 

  • Banerjee, S., Dutta, S., Paikaray, S., and Mann, U., 2006. Stratigraphy, sedimentology and bulk organic geochemistry of black shales from the Proterozoic Vindhyan Supergroup (central India). Journal of Earth Systems Science, 115, 37–47.

    Article  Google Scholar 

  • Bechtel, A., and Püttmann, W., 1997. Palaeoceanography of the early Zechstein Sea during Kupferschiefer deposition in the Lower Rhine Basin (Germany): A reappraisal from stable isotope and organic geochemical investigations. Palaeogeography, Palaeoclimatology, Palaeoecology, 136, 331–358.

    Article  Google Scholar 

  • Berger, W. H., and Wefer, G., 2002. On the reconstruction of upwelling history: Namibia upwelling in context. Marine Geology, 180, 3–28.

    Article  Google Scholar 

  • Berner, R. A., 2006. GEOCARBSULF: A combined model for Phanerozoic atmospheric O2 and CO2. Geochimica et Cosmochimica Acta, 70, 5653–5664.

    Article  Google Scholar 

  • Catling, C. D., and Claire, M. W., 2005. How Earth’s atmosphere evolved to an oxic state: A status report. Earth and Planetary Science Letters, 237, 1–20.

    Article  Google Scholar 

  • Demaison, G. J., and Moore, G. T., 1980. Anoxic environments and oil source bed genesis. Bulletin American Association Petroleum Geologists, 64, 1179–1209.

    Google Scholar 

  • Dethlefsen, V., and von Westernhagen, H., 1983. Oxygen deficiency and effects on bottom fauna in the eastern German Bight 1982. Meeresforschung, 30, 42–53.

    Google Scholar 

  • Erbacher, J., Huber, B. T., Norris, R. D., and Markey, M., 2001. Increased thermohaline stratification as a possible cause for an ocean anoxic event in the Cretaceous period. Nature, 409, 325–329.

    Article  Google Scholar 

  • Erbacher, J., Friedrich, O., Wilson, P. A., Birch, H., and Mutterlose, J., 2005. Stable organic carbon isotope stratigraphy across oceanic anoxic event 2 of Dmerara Rise, western tropical Atlantic. Geochemistry Geophysics Geosystems, 6, Q06010, doi:10.1029/2004GC000850.

    Article  Google Scholar 

  • Frimmel, A., Oschmann, W., and Schwark, L., 2004. Chemostratigraphy of the Posidonia Black Shale, SW Germany. I. Influence of sea-level variation on organic facies evolution. Chemical Geology, 206, 199–230.

    Article  Google Scholar 

  • Hebbeln, D., Marchant, M., and Wefer, G., 2002. Paleoproductivity in the southern Peru-Chile current through the last 33,000 yr. Marine Geology, 186, 487–504.

    Article  Google Scholar 

  • Herrle, J. O., Pross, J., Friedrich, O., and Hemleben, C., 2003. Short-term environmental changes in the Cretaceous Tethyan Ocean: Micropaleontological evidence from the Early Albian Oceanic Anoxic Event 1b. Terra Nova, 15, 14–19.

    Article  Google Scholar 

  • Hopf, H., Thiel, V., and Reitner, J., 2001. An example for black shale development an a carbonate platform (late Triasssic, Seefeld Austria). Facies, 45, 203–210.

    Article  Google Scholar 

  • Kollmann, H., and Stachowitsch, M., 2000. Long-term changes in the benthos of the Northern Adriatic Sea: a phototransect approach. Marine Ecology, 22, 135–154.

    Article  Google Scholar 

  • Miller, R. G., 1991. A paleooceanographic approach to the Kimmeridge clay formation. In Huc, A. Y. (ed.), Deposition of Organic Facies. American Association of Petroleum Geologists Studies in Geology, 30, pp. 13–26.

    Google Scholar 

  • Oschmann, W., 1988. Kimmeridge clay sedimentation - a new cyclic model. Palaeogeography, Palaeoclimatology, Palaeoecology, 65, 217–251.

    Article  Google Scholar 

  • Oschmann, W., 1990. Environmental cycles in the late Jurassic northwest European epeiric basin: interaction with atmospheric and hydrospheric circulations. In Aigner, T., and Dott, R. H. (eds.), Processes and Patterns in Epeiric Basins. Sedimentary Geology, 69, pp. 313–332.

    Google Scholar 

  • Oschmann, W. 1994. Adaptive pathways of marine benthic organisms in oxygen-controlled environments. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, 191, 393–444.

    Google Scholar 

  • Oschmann, W., 2000. Oxygen in the ocean. In Briggs, D. E. G., and Crowther, P. R. (eds.), Palaeobiology: A Synthesis. Oxford: Blackwell, pp. 474–477.

    Google Scholar 

  • Rhoads, D. C., and Morse, I. W., 1971. Evolutionary and ecological significance of oxygen-deficient marine basins. Lethaia, 4, 413–428.

    Article  Google Scholar 

  • Rink, B., Seeberger, S., Martens, T., Dürselen, C., Simon, M., and Brinkhoff, T., 2007. Effects of a phytoplankton bloom in a coastal ecosystem on the composition of bacterial communities. Aquatic Microbial Ecology, 48, 47–60.

    Article  Google Scholar 

  • Röhl, H. J., Schmid-Röhl, A., Oschmann, W., Frimmel, A., and Schwark, L., 2001. The Posidonia Shale (Lower Toarcian) of SW-Germany: an oxygen depleted ecosystem controlled by sea level and palaeoclimate. Palaeogeology, Palaeoclimatology, Palaeoecology, 165, 27–52.

    Article  Google Scholar 

  • Röhl, H. J., Schmid-Röhl, A., Frimmel, A., Oschmann, W., Furrer, H., and Schwark, L., (2002). Microfacies, geochemistry and palaeoecology of the middle Triassic Grenzbitumenzone from Monte San Giorgio (Tessin). Geologia Insubrica, 6, 1–13.

    Google Scholar 

  • Rouxel, O. J., Bekker, A., and Edwards, K. J., 2005. Iron isotope constraints on the Archean and Paleoproterozoic ocean redox state. Science, 307, 1088–1091.

    Article  Google Scholar 

  • Samuelsson, J., Dawes, P. R., and Vidal, G., 1999. Organic-walled microfossils from Proterozoic Thule Supergroup, Northwest Greenland. Precambrian Research, 96, 1–23.

    Article  Google Scholar 

  • Schmiedl, G., and Mackensen, A., 2006. Multi-species stable isotopes of benthic foraminifers reveal past changes of organic matter decomposition and deep-water oxygenation in the Arabian Sea. Paleoceanography, 21, PA4213, doi:10.1029/2006PA001284.

    Article  Google Scholar 

  • Tyson, R. V., and Pearson, T. H., 1991. Modern and ancient continental shelf anoxia: an overview. In Tyson, R.V., and Pearson, T.H. (eds.), Modern and Ancient Continental Shelf Anoxia. Tulsa, OK:  Geological Society Special Publication 58, pp. 1–24.

    Google Scholar 

  • van de Schootbrugge, B., McArthur, J. M., Bailey, T. R., Rosenthal, Y., Wright, J. D., and Miller, K. G., 2005. Toarcian oceanic anoxic event: an assessment of global causes using belemnite C isotope records. Paleoceanography, 20, PA3008, doi:10.1029/2004PA001102.

    Article  Google Scholar 

  • Wefer, G., Berger, W. H., Bickert, T., Donner, B., Fischer, G., Kemle-von Mücke, S., Meinecke, G., Müller, P. J., Mulitza, S., Niebler, H. S., Pätzold, J., Schmidt, H., Schneider, R. R., and Segl, M., 1996. Late Quaternary surface circulation of the South Atlantic: the stable isotope record and implications for heat transport and productivity. In Wefer, G., Berger, W.H., Siedler, G., and Webb, D. (eds.), The South Atlantic: Present and Past Circulation. Berlin: Springer, pp. 461–502.

    Chapter  Google Scholar 

  • Wignall, P., 1994. Black shales. Oxford Monographs in Geology and Geophysics, 30, 1–127.

    Google Scholar 

  • Wilms, R., Sass, H., Köpke, B., Köster, J., Cypionka, H., and Engelen, B., 2006. Specific bacterial archaeal, and eukaryotic communities in tidal-flat sediment along a vertical profile of several meters. Applied and Environmental Microbiology, 72, 2756–2764.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this entry

Cite this entry

Oschmann, W. (2011). Black Shales. In: Reitner, J., Thiel, V. (eds) Encyclopedia of Geobiology. Encyclopedia of Earth Sciences Series. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9212-1_37

Download citation

Publish with us

Policies and ethics