Skip to main content

Radiation Chemistry

  • Reference work entry
Handbook of Nuclear Chemistry

Abstract

Ionizing radiation causes chemical changes in the molecules of the interacting medium. The initial molecules change to new molecules, resulting in changes of the physical, chemical, and eventually biological properties of the material. For instance, water decomposes to its elements H2 and O2. In polymers, degradation and crosslinking take place. In biopolymers, e.g., DNS strand breaks and other alterations occur. Such changes are to be avoided in some cases (radiation protection), however, in other cases they are used for technological purposes (radiation processing). This chapter introduces radiation chemistry by discussing the sources of ionizing radiation (radionuclide sources, machine sources), absorption of radiation energy, techniques used in radiation chemistry research, and methods of absorbed energy (absorbed dose) measurements. Radiation chemistry of different classes of inorganic (water and aqueous solutions, inorganic solids, ionic liquids (ILs)) and organic substances (hydrocarbons, halogenated compounds, polymers, and biomolecules) is discussed in concise form together with theoretical and experimental backgrounds. An essential part of the chapter is the introduction of radiation processing technologies in the fields of polymer chemistry, food processing, and sterilization. The application of radiation chemistry to nuclear technology and to protection of environment (flue gas treatment, wastewater treatment) is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,599.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 3,499.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alfassi ZB (1989) In: Patai S (ed) Radiation chemistry of double-bonded compounds, The chemistry of double-bonded functional groups. Wiley, Chichester, pp 527–565

    Google Scholar 

  • Aoki Y, Nakajyo T, Tsunemi A, Yang J, Okada Y, Yorozu M, Hirose M, Sakai F, Endo A (2001) Res Chem Intermed 27:689

    CAS  Google Scholar 

  • Asano A, Yang J, Kundoh T, Norizawa K, Nagaishi R, Akahashi K, Yoshida Y (2008) Radiat Phys Chem 77:1244

    CAS  Google Scholar 

  • Ashton L, Buxton GV, Stuart CR (1995) J Chem Soc Faraday Trans 91:1631

    CAS  Google Scholar 

  • Ausloos P, Lias SG (1974) Far ultraviolet photochemistry of organic compounds. In: Sandorfy C, Ausloos P, Robin MB (eds) Chemical spectroscopy and photochemistry in the vacuum ultraviolet. Reidel, Dordrect, pp 465–482

    Google Scholar 

  • Ausloos P, Rebbert FP, Shwartz FP, Lias SG (1983) Radiat Phys Chem 21:27

    CAS  Google Scholar 

  • Baldacchino G, Hickel B (2008) Water radiolysis under extreme conditions. Application to the nuclear industry. In: Spotheim-Maurizot M, Mostafavi M, Douki T, Belloni J (eds) Radiation chemistry: from basics to applications in material and life sciences. EDP Sciences, Paris, pp 53–64

    Google Scholar 

  • Bansal KM, Freeman GR (1971) Radiat Res Rev 3:209

    CAS  Google Scholar 

  • Barbara PF (chair) (1998) Research needs and opportunities in radiation chemistry, Final Report of the Workshop held April 19–22, 1998, Charleston, Indiana

    Google Scholar 

  • Baxendale JH, Busi F (eds) (1982) The study of fast processes and transient species by electron pulse radiolysis. Reidel, Dordrecht

    Google Scholar 

  • Bednar J (1983) Generation of high atomic and molecular Rydberg states. In: Dobó J, Schiller R (eds) Proceedings of the 5th Tihany symposium on radiation chemistry. Akadémiai Kiadó, Budapest, pp 21–31

    Google Scholar 

  • Belloni J, Remita H (2008) Metal clusters and nanomaterials. In: Spotheim-Maurizot M, Mostafavi M, Douki T, Belloni J (eds) Radiation chemistry: from basics to applications in material and life sciences. EDP Sciences, Paris, pp 97–116

    Google Scholar 

  • Belloni J, Mostafavi M (2004) Charged particle and photon interactions in metal clusters and polarographic systems studies. In: Mozumder A, Hatano Y (eds) Charged particle and photon interactions with matter: chemical, physicochemical and biological consequences with applications. Marcel Dekker, New York, pp 579–616

    Google Scholar 

  • Belloni J, Mostafavi M, Remita H, Marguiner JL, Delcourt MO (1998) New J Chem 22:1239

    CAS  Google Scholar 

  • Benndict M, Pigford TH, Levi HW (1981) Nuclear chemical engineering, 2nd edn. McGraw-Hill, New York

    Google Scholar 

  • Bensasson RV, Jori G, Land EJ, Truscott TG (eds) (1985) Primary photo-processes in biology and medicine. Plenum, New York

    Google Scholar 

  • Bensasson RV, Land EJ, Truscott TG (eds) (1993) Excited states and free radicals in biology and medicine. Oxford University Press, Oxford

    Google Scholar 

  • Berlman IB (1971) Handbook of fluorescence spectra of aromatic molecules. Academic, New York

    Google Scholar 

  • Berthon L, Nikitenko SI, Bisel I, Berthon C, Faucon M, Saucerotte B, Zorz N, Moisy Ph (2006) Dalton Trans 2526

    Google Scholar 

  • Birks JB (1970) Photophysics of aromatic molecules. Wiley, London

    Google Scholar 

  • Bíró A, Takács E, Wojnárovits L (1996) Macromol Rapid Commun 17:353

    Google Scholar 

  • Blaunstein RP, Christophorou LG (1971) Radiat Res Rev 3:69

    CAS  Google Scholar 

  • Bouillot MS (1970) Int J Radiat Phys Chem 2:117

    CAS  Google Scholar 

  • Bradley R (1984) Radiation technology handbook. Marcel Dekker, New York

    Google Scholar 

  • Brandrup J, Immergut EH, Grulke EA (1999) Polymer handbook, 4th edn. Wiley, New York

    Google Scholar 

  • Brede O, Boes J, Naumann W, Mehnert R (1978) Radiochem Radioanal Lett 35:85

    CAS  Google Scholar 

  • Brede O, Hermann R, Wojnárovits L, Stephan L, Taplick T (1989) Radiat Phys Chem 34:403

    CAS  Google Scholar 

  • Burns WG, Reed CRV (1970) Trans Faraday Soc 66:2159

    CAS  Google Scholar 

  • Busi E, D’Angelantonio M, Mulazzani QG, Tubertini O (1987) In: Hedvig P, Nyikos L, Schiller R (eds) Proceedings of the 6th Tihany symposium on radiation chemistry. Akadémiai Kiadó, Budapest, pp 741–751

    Google Scholar 

  • Buxton CV, Stuart CR (1995) J Chem Soc Faraday Trans 91:279

    CAS  Google Scholar 

  • Buxton G, Gillis H, Klassen NV (1977) Can J Chem 54:367

    Google Scholar 

  • Buxton GV (1982) Basic radiation chemistry of liquid water. In: Baxendale JH, Busi F (eds) The study of fast processes and transient species by electron pulse radiolysis. Reidel, Dordrect, pp 241–266

    Google Scholar 

  • Buxton GV (1987) Radiation chemistry of the liquid state: (1) water and homogenous aqueous solutions. In: Farhataziz, Rodgers MAJ (eds) Radiation chemistry, principles and applications. VHC, New York, pp 321–349

    Google Scholar 

  • Buxton G, Greenstock CL, Helman WP, Ross AB (1988) J Phys Chem Ref Data 17:513, Updated version can be found in the Notre Dame University database, http://www.rcdc.nd.edu

  • Buxton G (2001) Stud Phys Theor Chem 87:145–162

    CAS  Google Scholar 

  • Chapiro A (1962) Radiation chemistry of polymeric systems. Wiley, New York

    Google Scholar 

  • Charlesby A (1960) Atomic radiation and polymers. Pergamon, New York

    Google Scholar 

  • Charlesby A (1987) Radiation chemistry of polymers. In: Farhataziz, Rodgers MAJ (eds) Radiation chemistry: principles and applications. VHC Publishers, New York, pp 451–475

    Google Scholar 

  • Chaychian M, Al-Sheikhly M, Silverman J, McLaughlin WL (1998) Radiation induced reduction and removal of heavy-metal ions from water. In: Cooper WJ, Curry RD, Shea KE (eds) Environmental applications of ionizing radiation. Wiley, New York, pp 353–367

    Google Scholar 

  • Chimielewski AG, Licki J, Pawelec A, Tyminski B, Zimek Z (2004) Radiat Phys Chem 71:441

    Google Scholar 

  • Chimielewski AG (2002) Environmental effects of fossil fuel combustion. In: Encyclopedia of life support systems (EOLSS). EOLSS Publishers, Oxford

    Google Scholar 

  • Choppin G, Liljenzin JO, Rydberg J (1995) Radiochemistry and nuclear chemistry, 2nd edn. Butterworth-Heinemann, Oxford

    Google Scholar 

  • Christodoulides AA, McCorkle DL, Christophorou LG (1984) Electron attachment processes. In: Christophorou LG (ed) Electron–molecule interaction applications. Academic, Orlando, pp 477–617

    Google Scholar 

  • Chutny B, Kucera J (1974) Radiat Res Rev 5:1, 55, 93, 135

    Google Scholar 

  • Clough RL, Shalaby SW (eds) (1996) Irradiation of polymers: fundamentals and technological applications. American Chemical Society Books, Washington, DC

    Google Scholar 

  • Clough RL (2001) Nucl Instr Meth B 185:8

    CAS  Google Scholar 

  • Coqueret X (2008) Obtaining high performance polymeric materials by irradiation. In: Spotheim-Maurizot M, Mostafavi M, Douki T, Belloni J (eds) Radiation chemistry: from basics to applications in material and life sciences. EDP Sciences, Paris, pp 131–149

    Google Scholar 

  • Cramer WA (1967) J Phys Chem 71:1171

    CAS  Google Scholar 

  • Cserép Gy (1981) Aliphatic alkenes. In: Földiák G (ed) Radiation chemistry of hydrocarbons. Amsterdam, Elsevier, pp 253–349; Cycloalkanes. pp 351–392

    Google Scholar 

  • De Haas MP, Warman JM, Infelta PP, Hummel A (1975) Chem Phys Lett 31:382

    Google Scholar 

  • De Haas MP, Hummel A, Infelta PP, Warman JM (1976) J Chem Phys 65:5019

    Google Scholar 

  • Delincée H (2002) Radiat Phys Chem 63:455

    Google Scholar 

  • Dellonte S, Flamigni L, Barigelletti F, Wojnárovits L, Orlandi G (1984) J Phys Chem 88:58

    CAS  Google Scholar 

  • Dole M (1973) The radiation chemistry of macromolecules. Academic, New York

    Google Scholar 

  • Draganic IG, Draganic ZD (1971) The radiation chemistry of water. Academic, New York

    Google Scholar 

  • Dyer J, Daul C (1998) Rayon fibers. In: Lewin M, Pearce EM (eds) Handbook of fiber chemistry. Marcel Dekker, New York, p 738

    Google Scholar 

  • Ebert M, Keene JP, Swallow AJ, Baxendale JH (eds) (1965) Pulse radiolysis. Academic, London

    Google Scholar 

  • Elias PS, Cohen AJ (eds) (1983) Recent advances in food irradiation. Elsevier, New York

    Google Scholar 

  • Elias PS, Cohen AJ (eds) (1987) Radiation chemistry of major food components. Elsevier, New York

    Google Scholar 

  • Emmi SS, Takács E (2008) Water remediation by electron-beam treatment. In: Spotheim-Maurizot M, Mostafavi M, Douki T, Belloni J (eds) Radiation chemistry: from basics to applications in material and life sciences. EDP Sciences, Paris, pp 87–95

    Google Scholar 

  • Farkas J (2004) Food irradiation. In: Mozumder A, Hatano Y (eds) Charged particle and photon interactions with matter: chemical, physicochemical and biological consequences with applications. Marcel Dekker, New York, pp 785–812

    Google Scholar 

  • Farkas J (1988) Irradiation of dry food ingredients. CRC, Boca Raton

    Google Scholar 

  • Fielden EM (1982) Chemical dosimetry of pulsed electron and X-ray sources in the 1–20 MeV range. In: Baxendale JH, Busi F (eds) The study of fast processes and transient species by electron pulse radiolysis. Reidel, Dordrect, pp 49–62

    Google Scholar 

  • Flamigni L, Barigelletti F, Dellonte S, Orlandi G (1982) Chem Phys Lett 89:13

    CAS  Google Scholar 

  • Földiák G (ed) (1981) Radiation chemistry of hydrocarbons. Elsevier, Amsterdam

    Google Scholar 

  • Földiák G (ed) (1986) Industrial application of radioisotopes. Elsevier, Amsterdam

    Google Scholar 

  • Földiák G, György I, Wojnárovits L (1976) Int J Radiat Phys Chem 8:575

    Google Scholar 

  • Freeman GR (1968) Radiat Res Rev 1:1

    CAS  Google Scholar 

  • Freeman GR (1970) The radiolysis of alcohols. In: Haissinsky M (ed) Actions Chimiques et Biologiques des Radiations, vol 14. Masson, Paris, pp 73–134

    Google Scholar 

  • Freeman GR (1974) Radiation chemistry of ethanol: a review of data on yields, reaction rate parameters, and spectral properties of transients. NSRDS-NBS48, p 43

    Google Scholar 

  • Freeman GR (ed) (1987) Kinetics of nonhomogeneous processes. Wiley, New York

    Google Scholar 

  • Gäumann T, Hoigné J (1968) Aspects of hydrocarbon radiolysis. Academic, London

    Google Scholar 

  • Graselli M, Smolko E, Hargittai P, Safrany A (2001) Nucl Instr Meth Phys Res B 185:254

    Google Scholar 

  • Grigoriev EI, Traktenberg LI (1996) Radiation chemical processes in the solid phase: theory and application. CRC, Boca Raton

    Google Scholar 

  • Gautam S, Shah MR, Sabharwal S, Sharma A (2005) Water Environ Res 77:472

    CAS  Google Scholar 

  • Grodkowski J, Neta P (2002) J Phys Chem A 106:9030

    CAS  Google Scholar 

  • György I (1981) Aliphatic alkanes. In: Földiák G (ed) Radiation chemistry of hydrocarbons. Elsevier, Amsterdam, pp 61–176

    Google Scholar 

  • Haji-Saeid M (2007) Radiation processing: environmental applications. International Atomic Energy Agency, Vienna

    Google Scholar 

  • Han B, Ko J, Kim J, Kim Y, Chung W, Makarov IE, Ponomarev AV, Pikaev AK (2002) Radiat Phys Chem 64:53

    CAS  Google Scholar 

  • Harmon CD, Smith WH, Costa DA (2001) Radiat Phys Chem 60:157

    CAS  Google Scholar 

  • Hart EJ, Fielden EM, Anbar M (1967) J Phys Chem 71:3993

    CAS  Google Scholar 

  • Hashimoto S, Kawakami W (1984) Radiat Phys Chem 24:29

    Google Scholar 

  • Hatano Y (1968) Bull Chem Soc Jpn 41:1126

    CAS  Google Scholar 

  • Hatano Y (1999) Phys Rep 313:109

    CAS  Google Scholar 

  • Hebeish A, Guthrie JT (1981) The chemistry and technology of cellulosic copolymers. Springer, Berlin

    Google Scholar 

  • Herkstroeter WG, Gould IR (1993) Absorption spectroscopy of transient species. In: Rossiter BW, Baetzold RC (eds) Determination of electronic and optical properties, vol VIII, Physical methods in chemistry. Wiley, New York, pp 225–319

    Google Scholar 

  • Hermann R, Mehnert R, Wojnárovits L (1985) J Lumin 33:69

    CAS  Google Scholar 

  • Hirayama F, Lipsky S (1975) J Chem Phys 62:576

    CAS  Google Scholar 

  • Ho SK, Freeman GR (1964) J Phys Chem 68:2189

    CAS  Google Scholar 

  • Hoigné J (1968) Aromatic hydrocarbons. In: Gäumann T, Hoigné J (eds) Aspects of hydrocarbon radiolysis. Academic, London, pp 61–151

    Google Scholar 

  • Holm NW, Berry R (1970) Manual on radiation dosimetry. Marcel Dekker, New York

    Google Scholar 

  • Holroyd RA (1968) Radical yields in hydrocarbons. In: Gäumann T, Hoigné J (eds) Aspects of hydrocarbon radiolysis. Academic, London, pp 1–32

    Google Scholar 

  • Holroyd RA (1987) The electron: its properties and reactions. In: Farhataziz, Rodgers MAJ (eds) Radiation chemistry: principles and applications. VCH, New York, pp 201–235

    Google Scholar 

  • Holroyd RA, Schmidt WF (1989) Ann Rev Phys Chem 40:439

    CAS  Google Scholar 

  • Holroyd RA (2004) Electrons in nonpolar liquids. In: Mozumder A, Hatano Y (eds) Charged particle and photon interactions with matter: chemical, physicochemical and biological consequences with applications. Marcel Dekker, New York, pp 175–206

    Google Scholar 

  • Hummel A (1992) Radiation chemistry of alkanes and cycloalkanes. In: Patai S, Rappoport Z (eds) The chemistry of alkanes and cycloalkanes. Wiley, Chichester, pp 743–780

    Google Scholar 

  • Hummel A, Schmidt WF (1974) Radiat Res Rev 5:199

    CAS  Google Scholar 

  • Hummel RW (1970) Int J Radiat Phys Chem 2:119

    CAS  Google Scholar 

  • IAEA-TECDOC-1598 (2008) Radiation treatment of polluted water and wastewater. International Atomic Energy Agency, Vienna

    Google Scholar 

  • IAEA TECDOC-539 (1990) Guidelines for industrial radiation sterilization of disposable medical products (Cobalt-60 gamma irradiation). International Atomic Energy Agency, Vienna

    Google Scholar 

  • IAEA (1975) Radiation sterilization of medical products. International Atomic Energy Agency, Vienna

    Google Scholar 

  • Ichikawa T, Yoshida H (1992) J Phys Chem 96:7661

    CAS  Google Scholar 

  • Ivanov VS (1992) Radiation chemistry of polymers. VSP Publishers, Utrecht

    Google Scholar 

  • Jonah CD (1975) Rev Sci Instrum 46:62

    CAS  Google Scholar 

  • Karolczak S (1999) Pulse radiolysis—experimental features. In: Mayer J (ed) Properties and reactions of radiation induced transients. Selected topics. Polish Scientific Publishers, Warszava, pp 5–37

    Google Scholar 

  • Kase KR, Bjängard BE, Attix FH (1985) The dosimetry of ionizing radiation, vol I and II. Academic, Orlando

    Google Scholar 

  • Katsumura Y (2004) Application of radiation chemistry to nuclear technology. In: Mozumder A, Hatano Y (eds) Charged particle and photon interactions with matter: chemical, physicochemical and biological consequences with applications. Marcel Dekker, New York, pp 697–727

    Google Scholar 

  • Knolle W, Trautman C (eds) (1999) Conference proceedings of Ionizing radiation and polymers, IRaP98, held in Weinbohla near Dresden. Nucl Instr Meth B 151:1–4

    Google Scholar 

  • Kobayashi H, Tabata Y (1989) Radiat Phys Chem 34:447

    Google Scholar 

  • Kouchi N, Hatano Y (2004) Interactions of photons with molecules: photoabsorption, photoionization, and photodissociation cross sections. In: Mozumder A, Hatano Y (eds) Charged particle and photon interactions with matter: chemical, physicochemical and biological consequences with applications. Marcel Dekker, New York, pp 105–120

    Google Scholar 

  • Krassig HA (1996) Cellulose, structure, accessibility and reactivity. Gordon & Beach, Amsterdam, p 219

    Google Scholar 

  • Kroh J (ed) (1989) Early developments in radiation chemistry. The Royal Society of Chemistry, Cambridge

    Google Scholar 

  • Kroh J (1991) Pulse radiolysis of glassy solids. In: Tabata Y (ed) Pulse radiolysis. CRC, Boca Raton

    Google Scholar 

  • Land EJ, Ebert M (1967) Trans Faraday Soc 63:1181

    CAS  Google Scholar 

  • LaVerne JA, Schuler RH (1984) J Phys Chem 88:1200

    CAS  Google Scholar 

  • LaVerne JA, Wojnárovits L (1994) J Phys Chem 98:12635

    CAS  Google Scholar 

  • Lessel T, Suess A (1984) Radiat Phys Chem 24:3

    CAS  Google Scholar 

  • Lias SG, Ausloos P (1975) Ion-molecule reactions. Their role in radiation chemistry. American Chemical Society, Washington DC

    Google Scholar 

  • Luthjens LH, Frahn MS, Abellon RD, Hom ML, Warman JM (2001) Res Chem Intermed 27:765

    CAS  Google Scholar 

  • Machi S (1998) Radiat Phys Chem 52:591

    CAS  Google Scholar 

  • Mae LK (1987) Radiation chemistry of biopolymers. In: Farhataziz, Rodgers MAJ (eds) Radiation chemistry: principles and applications, VHC, New York, pp 477–499

    Google Scholar 

  • Makarov VI, Polak LS (1970) High Energy Chem 4:1

    Google Scholar 

  • Makhlis FA (1975) Radiation chemistry of polymers. Wiley, New York

    Google Scholar 

  • Markovic V (ed) (1986) Electron beam processing of flue gases. IAEA, Vienna

    Google Scholar 

  • Martelli F, Higa OZ, Takács E, Safranj A, Yoshida M, Katakai R, Carenza M (1999) Radiat Phys Chem 55:155

    Google Scholar 

  • Mayer J (ed) (1999) Properties and reactions of radiation induced transients. Selected topics. Polish Scientific Publishers, Warszawa

    Google Scholar 

  • McLaughlin WL, Boyd AW, Chadwick KH, McDonald JC, Miller A (1989) Dosimetry for radiation processing. Taylor & Francis, London

    Google Scholar 

  • Mehnert R, Brede O, Cserép G (1981) Radiochem Radioanal Lett 47:173

    CAS  Google Scholar 

  • Mehnert R, Brede O, Cserép G (1985) Radiat Phys Chem 26:353

    CAS  Google Scholar 

  • Meisels GG (1970) The radiolysis of olefins. In: Zabicky J (ed) The chemistry of alkenes, vol 2. Interscience, London, pp 359–410

    Google Scholar 

  • Milinchuk VK, Tupikov VI (eds) (1989) Organic chemistry handbook. Ellis Horwood, Chichester

    Google Scholar 

  • Mozumder A (2004) Interactions of fast charged particles with matter. In: Mozumder A, Hatano Y (eds) Charged particle and photon interactions with matter: chemical, physicochemical and biological consequences with applications. Marcel Dekker, New York, pp 9–29

    Google Scholar 

  • Mozumder A (1999) Fundamentals of radiation chemistry. Academic, San Diego

    Google Scholar 

  • Muroya Y, Watanabe T, Wu G, Li X, Kobayashi T, Sugahara J, Ueda T, Yoshii K, Uesaka M, Katsumura Y (2001) Radiat Phys Chem 60:307

    CAS  Google Scholar 

  • Nagaoka N, Safranj A, Yoshida M, Omichi H, Kubota H, Katakai R (1992) Macromolecules 26:7386

    Google Scholar 

  • Namba H, Tokunaga O, Suzuki R, Aoki J (2004) Electron beam applications to flue gas treatment. In: Mozumder A, Hatano Y (eds) Charged particle and photon interactions with matter: chemical, physicochemical and biological consequences with applications. Marcel Dekker, New York, pp 729–742

    Google Scholar 

  • Neta P, Huie RE, Ross AB (1988) J Phys Chem Ref Data 17:1027

    CAS  Google Scholar 

  • Patterson LK (1987) Instrumentation for measurements of transient behaviour in radiation chemistry. In: Farhataziz, Rodgers MAJ (eds) Radiation chemistry principles and applications. VHC Publishers, New York, pp 65–96

    Google Scholar 

  • Platzman RL (1962) The Vortex 23:372

    CAS  Google Scholar 

  • Qi M, Wu G, Li Q, Luo Y (2008) Radiat. Phys Chem 77:877

    CAS  Google Scholar 

  • Raffi J, Kister J (2008) Food irradiation: wholesomeness and treatment control. In: Spotheim-Maurizot M, Mostafavi M, Douki T, Belloni J (eds) Radiation chemistry: from basics to applications in material and life sciences. EDP Sciences, Paris, pp 165–174

    Google Scholar 

  • Rawat KP, Sharma A, Rao SM (1997) Water Res 32:737

    Google Scholar 

  • Robin MB (1974, 1975, 1985) Higher excited states of polyatomic molecules, vol I, II, III. Academic, New York

    Google Scholar 

  • Robinson VJ, Chandratillake MR (1987) Radiation chemistry of alkali halides. In: Farhataziz, Rodgers MAJ (eds) Radiation chemistry: principles and applications, VHC, New York, pp 439–450

    Google Scholar 

  • Roder M (1981) Aromatic hydrocarbons. In: Földiák G (ed) Radiation chemistry of hydrocarbons. Elsevier, Amsterdam, pp 393–468

    Google Scholar 

  • Roder M, Wojnárovits L, Földiák G, Emmi SS, Beggiato G, D’Angelantonio M (1999) Radiat Phys Chem 54:475

    CAS  Google Scholar 

  • Rosiak JM, Janik I, Kadlubowski S, Koziczki M, Kujawa P, Stasica P, Ulanski P (2002) In: Radiation synthesis and modification of polymers for biomedical applications, IAEA-TECDOC-1324. Vienna, Austria, pp 5–47

    Google Scholar 

  • Rothman W, Hirayama F, Lipsky S (1973) J Chem Phys 58:1300

    CAS  Google Scholar 

  • Schuler RH, Albarran G (2002) Radiat Phys Chem 64:109

    Google Scholar 

  • Schuler RH, Wojnarovits L (2003) J Phys Chem A 107:9240

    CAS  Google Scholar 

  • Shida T (1988) Electronic absorption spectra of radical ions. Elsevier, Amsterdam

    Google Scholar 

  • Shkrob IA, Trifunac AD (1995) Radiat Phys Chem 46:97

    CAS  Google Scholar 

  • Shkrob IA, Sauer MC Jr, Trifunac AD (1996) J Phys Chem 100:7237

    CAS  Google Scholar 

  • Shkrob IA, Sauer MC, Trifunac AD (2001) Stud Phys Theor Chem 87:175

    CAS  Google Scholar 

  • Shkrob IA, Chemerisov SD, Wishart JF (2007) J Phys Chem B 111:11786

    CAS  Google Scholar 

  • Singh A, Silverman J (eds) (1992) Radiation processing of polymers. Hanser, Munich

    Google Scholar 

  • Spinks JWT, Woods RJ (1990) An introduction to radiation chemistry, 3rd edn. Wiley, New York

    Google Scholar 

  • Sivinski JS (1983) Radiat Phys Chem 22:99

    CAS  Google Scholar 

  • Steenken S (1985) Electron transfer equilibria involving free radicals in aqueous solution. In: Fisher H (ed) Landold-Börstein, Neue Serie, Gruppe II, vol 13e. Springer, Heidelberg, pp 147–293

    Google Scholar 

  • Steenken S (1987) J Chem Soc Faraday Trans I 83:113

    Google Scholar 

  • Steenken S (1996) Top Curr Chem 177:125

    CAS  Google Scholar 

  • Strauss P, Knolle W, Naumov S (1998) Macromol Chem Phys 199:2229

    CAS  Google Scholar 

  • Swallow AJ (1973) Radiation chemistry: an introduction. Longman, London

    Google Scholar 

  • Swallow AJ (1982) Application of pulse radiolysis to study of aqueous organic systems. In: Baxendale JH, Busi F (eds) The study of fast processes and transient species by electron pulse radiolysis. Reidel, Dordrect, pp 289–315

    Google Scholar 

  • Tabata Y (ed) (1991a) CRC handbook of radiation chemistry. CRC, Boca Raton

    Google Scholar 

  • Tabata Y (ed) (1991b) Pulse radiolysis. CRC, Boca Raton

    Google Scholar 

  • Tagawa S, Seki S, Kozawa T (2004) Charged particle and photon-induced reactions in polymers. In: Mozumder A, Hatano Y (eds) Charged particle and photon interactions with matter: chemical, physicochemical, and biological consequences with applications. Marcel Dekker, New York, pp 551–578

    Google Scholar 

  • Takács E, Czajlik I, Czvikovszky T (1989) Radiat Phys Chem 33:457

    Google Scholar 

  • Takács E, Hedvig P (1991) In: Dobo J, Nyikos L, Schiller R (eds) Proceedings of the 7th Tihany symposium on radiation chemistry. Akademiai Kiado, Budapest, pp 261–267

    Google Scholar 

  • Takács E (1992) Radiat Phys Chem 40:75

    Google Scholar 

  • Takács E, Wojnárovits L, Foldvary Cs, Borsa J, Sajo I (2001) Res Chem Intermed 27:837

    Google Scholar 

  • Takamuku S, Yamamato Y (1991) Pulse radiolysis study related to organic synthesis. In: Tabata Y (ed) Pulse radiolysis. CRC, Boca Raton, pp 431–450

    Google Scholar 

  • Theard L (1965) J Phys Chem 69:3292

    CAS  Google Scholar 

  • Tilquin B (2008) Radiosterilization of drugs. In: Spotheim-Maurizot M, Mostafavi M, Douki T, Belloni J (eds) Radiation chemistry: from basics to applications in material and life sciences. EDP Sciences, Paris, pp 151–163

    Google Scholar 

  • Topchiev AV (1964) Radiation chemistry of hydrocarbons. Elsevier, Amsterdam

    Google Scholar 

  • Triphathi SC, Ramanujam A (2003) Sep Sci Technol 38:2307

    Google Scholar 

  • Trump J, Merrill EW, Wright KA (1984) Radiat Phys Chem 24:55

    CAS  Google Scholar 

  • Uesaka M, Watanabe T, Kobayashi T, Ueda T, Yoshii K, Wu G, Li X, Saeki A, Kozawa T, Yoshida Y, Tagawa S, Muroya Y, Sugahara J, Kinosita K, Hafs N, Okuda H, Nishihara T, Terada Y, Nakajima K, Katsumura Y (2001) Radiat Phys Chem 60:303

    CAS  Google Scholar 

  • Vysotskaya NA (1983) Radiation treatment of sewage sludge. In: Role of chemistry in environmental conservation, Naukova Dumka, Kiev, p 205, (in Russian)

    Google Scholar 

  • von Sonntag C, Schuchmann H-P (1986) Int J Radiat Biol 49:1

    CAS  Google Scholar 

  • von Sonntag C (1987a) The chemical basis of radiation biology. Taylor & Francis, London

    Google Scholar 

  • von Sonntag C (1987b) Radiat Phys Chem 30:313

    CAS  Google Scholar 

  • von Sonntag C, Ross AD (1987) Radiat Phys Chem 30:331

    CAS  Google Scholar 

  • von Sonntag C, Schuchmann H-P (2001) Stud Phys Theor Chem 87:513

    CAS  Google Scholar 

  • von Sonntag C (2006) Free-radical-induced DNA damage and its repair: a chemical perspective. Springer, Heidelberg

    Google Scholar 

  • Wardman P (1989) J Phys Chem Ref Data 18:1637

    CAS  Google Scholar 

  • Wickramaaratchi MA, Preses JM, Holroyd RA, Weston RE Jr (1985) J Chem Phys 82:4745

    CAS  Google Scholar 

  • Williams F (1963) Quart Rev 17:101

    CAS  Google Scholar 

  • Wilson JE (1974) Radiation chemistry of monomers, polymers, and plastics. Marcel Dekker, New York

    Google Scholar 

  • Wishart JF, Funston M, Szeder T (2006) Radiation chemistry of ionic liquids. In: Mantz RA et al (eds) Molten salts, vol XIV. The Electrochemical Society, Pennington, pp 802–813

    Google Scholar 

  • Wishart JF (2008) Tools for radiolysis studies. In: Spotheim-Maurizot M, Mostafavi M, Douki T, Belloni J (eds) Radiation chemistry: from basics to applications in material and life sciences. EDP Sciences, Paris, pp 17–33

    Google Scholar 

  • Wishart JF, Neta P (2003) J Phys Chem B 2003(107):7261

    Google Scholar 

  • Woods RJ, Pikaev AK (1994) Applied radiation chemistry: radiation processing. Wiley, New York

    Google Scholar 

  • Warman JM, Asmus K-D, Schuler RH (1968) Advan Chem Ser 82:25

    Google Scholar 

  • Warman JM, Asmus K-D, Schuler RH (1969) J Phys Chem 73:931

    CAS  Google Scholar 

  • Wojnárovits L, Földiák G (1991) In: Mai H, Brede O, Mehnert R (eds) Fifth working meeting on radiation interaction, ZFI, Leipzig, pp 64–74

    Google Scholar 

  • Wojnárovits L (1981) Cycloakanes. In: Földiák G (ed) Radiation chemistry of hydrocarbons. Elsevier, Amsterdam, pp 177–251

    Google Scholar 

  • Wojnárovits L, Schuler RH (2000) J Phys Chem A 104:1346

    Google Scholar 

  • Wojnárovits L (2004) Photochemistry and radiation chemistry of liquid alkanes, formation and decay of low energy excited states. In: Mozumder A, Hatano Y (eds) Charged particle and photon interactions with matter: chemical, physicochemical, and biological consequences with applications. Marcel Dekker, New York, pp 365–402

    Google Scholar 

  • Wojnárovits L, Takács E (2008) Radiat Phys Chem 77:225

    Google Scholar 

  • Wypych M (1999) Pulse radiolysis induced transients in frozen aqueous systems at low temperatures. In: Mayer J (ed) Properties and reactions of radiation induced transients. Selected topics. Polish Scientific Publishers, Warszava, pp 5–37

    Google Scholar 

  • Yang K, Manno PJ (1959) J Am Chem Soc 81:3507

    CAS  Google Scholar 

  • Zador E, Warman JM, Hummel A (1973) Chem Phys Lett 23:363

    CAS  Google Scholar 

  • Zaikin YA, Zaikina RF (2008) New trends in radiation processing of petroleum. In: Camilleri AN (ed) Radiation physics research progress. Nova Science Publishers, New York, pp 21–104

    Google Scholar 

  • Zeman A, Heusinger H (1966) J Phys Chem 70:33

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Wojnárovits .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this entry

Cite this entry

Wojnárovits, L. (2011). Radiation Chemistry. In: Vértes, A., Nagy, S., Klencsár, Z., Lovas, R.G., Rösch, F. (eds) Handbook of Nuclear Chemistry. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-0720-2_23

Download citation

Publish with us

Policies and ethics