Skip to main content

Activation Analysis

  • Reference work entry
Handbook of Nuclear Chemistry

Abstract

This chapter presents the basic principles of activation analysis and details its different types. Emphasis is given to instrumental neutron activation analysis and radiochemical separations for the determination of trace and ultra-trace elements. Location sensitive analysis is also included.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,599.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 3,499.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abugassa I, Sarmani SB, Samat SB (1999) Appl Radiat Isot 50:989

    Google Scholar 

  • Alamin MB, Bejey AM, Kucera J, Mizera J (2006) J Radioanal Nucl Chem 270:143

    CAS  Google Scholar 

  • Alfassi ZB (ed) (1994a) Chemical analysis by nuclear methods. Wiley, Chichester

    Google Scholar 

  • Alfassi ZB (1994b) Determination of trace elements. Balaban Publication, Rehovot

    Google Scholar 

  • Alfassi ZB (2001) In: Alfassi ZB (ed) Non-destructive elemental analysis, Chapter 1. Blackwell Sciences, Oxford, pp 4–57

    Google Scholar 

  • Amphlett CB (1964) Inorganic ion exchangers. Elsevier, Amsterdam

    Google Scholar 

  • Anderson J, Osborn SB, Tomlinson RWS, Newton D, Rundo J, Salmon L (1964) Lancet II:1201

    Google Scholar 

  • Armer HA, Shawky S (2002) Radiochim Acta 90:350

    Google Scholar 

  • Aumann DC, Güner D (1999) J Radioanal Nucl Chem 242:641

    CAS  Google Scholar 

  • Balla M, Keömley G, Molnár Zs (1998) In: Vértes A, Nagy S, Süvegh K (eds) Nuclear methods in mineralogy and geology, Chapter 2. Plenum Press, New York, pp 115–143

    Google Scholar 

  • Becker DA (1987) J Radioanal Nucl Chem 111:393

    Google Scholar 

  • Becker DA (1993) J Radioanal Nucl Chem 168:169

    CAS  Google Scholar 

  • Becker DA, Anderson DL, Lindstrom RM, Greenberg RR, Garrity KM, Mackey EA (1994) J Radioanal Nucl Chem 179:149

    CAS  Google Scholar 

  • Bedregal PS, Montoya EH (2002) J Radioanal Nucl Chem 254:363

    CAS  Google Scholar 

  • Biersack JP, Fink D (1973) Nucl Instrum Meth 108:397

    CAS  Google Scholar 

  • Biso JN, Cohen IM, Resnizki SM (1983) Radiochem Radioa Lett 58:175

    CAS  Google Scholar 

  • Blaauw M (1996) Nucl Sci Eng 124:431

    CAS  Google Scholar 

  • Blaauw M, Gelsema SJ (1999) Nucl Instrum Meth A 422:417

    CAS  Google Scholar 

  • Blaauw M, Osorio Fernandez V, Van Espen P, Bernasconi G, Capote Noy R, Manh Dung H, Molla NI (1997) Nucl Instrum Meth A 387:416

    CAS  Google Scholar 

  • Blackman MJ, Bishop RL (2007) Archaeometry 49:321

    CAS  Google Scholar 

  • Blanchard LJ, Robertson JD (1997) Analyst 122:1261

    CAS  Google Scholar 

  • Bode P, Overwater RMW, de Goeij JJM (1997) J Radioanal Nucl Chem 216:5

    CAS  Google Scholar 

  • Borsaru M, Biggs M, Nichols W, Bos F (2001) Appl Radiat Isot 54:335

    CAS  Google Scholar 

  • Brätter P, Gatschke W, Gawlik D, Klatt S (1977) Kerntechnik 19:225

    Google Scholar 

  • Brown ME (ed) (1961) Proceedings of the international conference modern trends in activation analysis. Texas A&M College, College Station

    Google Scholar 

  • Byrne AR (1986) J Environm Radioactivity 4:133

    CAS  Google Scholar 

  • Byrne AR, Benedik L (1999) Czechoslovak J Phys 49:265

    Google Scholar 

  • Byrne AR, Vakselj A (1974) Croat Chem Acta 46:225

    Google Scholar 

  • Caletka R, Faix WG, Krivan VJ (1982) J Radioanal Nucl Chem 72:109

    CAS  Google Scholar 

  • Caletka R, Hausbeck R, Krivan VJ (1988) J Radioanal Nucl Chem 120:305

    CAS  Google Scholar 

  • CCQM (2008) Key Comparison Data Base (KCDB). Bureau International des Poids et Mesures, Sèvres, France. Published on the internet: http://kcdb.bipm.org/default.asp

  • Chai CF (1988) Isotopenpraxis 24:257

    CAS  Google Scholar 

  • Chai CF, Ma SL, Mao XY, Liao KN, Liu WC (1987) J Radioanal Nucl Chem 114:281

    CAS  Google Scholar 

  • Chao JH, Tseng CL (1996) Nucl Instuments Methods Phys Res A 272:275

    Google Scholar 

  • Chen QJ, Dahlgaard H, Hansen HJM, Aarkrog A (1990) Anal Chim Acta 228:163

    CAS  Google Scholar 

  • Chen QJ, Dahlgaard H, Nielsen SP, Aarkrog A (2001) J Radioanal Nucl Chem 249:527

    CAS  Google Scholar 

  • Chilian C, St-Pierre J, Kennedy G (2008) J Radioanal Nucl Chem 278:745

    CAS  Google Scholar 

  • Chung C (1990) In: Alfassi ZB (ed) Activation analysis, Chapter 6, vol 2. CRP Press, Boca Raton, pp 299–320

    Google Scholar 

  • Clayton CG, Wormald MR (1983) Int J Appl Radiat Isot 34:3

    CAS  Google Scholar 

  • Clearfield A (1982) Inorganic ion exchanger materials. CRC Press, Boca Raton

    Google Scholar 

  • Csikai J (1987) CRC handbook of fast neutron generators, vol 1 and 2. CRC Press, Boca Raton

    Google Scholar 

  • Czauderna M (1985) J Radioanal Nucl Chem 89:13

    CAS  Google Scholar 

  • Czauderna M (1996) Appl Radiat Isot 47:735

    CAS  Google Scholar 

  • Damsgaard E, Ostergaard K, Heydorn K (1973) Talanta 20:1

    Google Scholar 

  • Dang HS, Jaiswal DD, Pullat VR, Mishra UC (2000) J Radioanal Nucl Chem 243:513

    CAS  Google Scholar 

  • Dang HS, Jaiswal DD, Nair S (2001) J Radioanal Nucl Chem 249:95

    CAS  Google Scholar 

  • de Bruin M (1998) J Radioanal Nucl Chem 234(1–2):5

    Google Scholar 

  • de Bruin M, Blaauw M (1992) Analyst 117:431

    Google Scholar 

  • De Corte F (1987) The k0-standardization method, a move to the optimization of neutron activation analysis. Rijksuniversiteit, Gent

    Google Scholar 

  • De Corte F, Simonits A (1989) J Radioanal Nucl Chem Art 133:43

    Google Scholar 

  • De Corte F, Simonits A (2003) At Data Nucl Data Tables 85:47

    Google Scholar 

  • De Corte F, Simonits A, De Wispelaere A, Hoste J (1987) J Radioanal Nucl Chem 113:145

    Google Scholar 

  • De Corte F, Simonits A, De Wispelaere A (1989a) J Radioanal Nucl Chem Art 133:131

    Google Scholar 

  • De Corte F, Simonits A, De Wispelaere A, Elek A (1989b) J Radioanal Nucl Chem 133:3

    Google Scholar 

  • De Corte F, Bellemans F, De Neve P, Simonits A (1994) J Radioanal Nucl Chem Art 179:93

    Google Scholar 

  • de Goeij JJM (1999) J Radioanal Nucl Chem 245:5

    Google Scholar 

  • Debertin K, Helmer RG (1988) Gamma- and X-ray spectrometry with semiconductor detectors. North-Holland, Amsterdam

    Google Scholar 

  • Dermelj M, Byrne AR (1997) J Radioanal Nucl Chem 216:13

    CAS  Google Scholar 

  • Dubczinskij R (1996) Zs Anal Him 51(12):1328, in Russian

    Google Scholar 

  • Egger KP, Krivan V (1986) Fresen J Anal Chem 323:827

    CAS  Google Scholar 

  • Egger KP, Krivan V (1988) Fresen J Anal Chem 331:394

    CAS  Google Scholar 

  • Ellis KJ (1990) In: Alfassi ZB (ed) Activation analysis, Chapter 10, vol 2. CRP Press, Boca Raton, pp 407–426

    Google Scholar 

  • Ellis KJ (2000) Physiol Rev 80:649

    CAS  Google Scholar 

  • Ellis KJ, Shypailo RJ, Hergenroeder AC, Perez MD, Abrams SA (2001) J Radioanal Nucl Chem 249:461

    CAS  Google Scholar 

  • Fardy JJ (1990) In: Alfassi ZB (ed) Activation analysis, Chapter 5, vol 1. CRC Press, Boca Raton, pp 62–96

    Google Scholar 

  • Farmer OT, Barinaga CJ, Koppenaal DW (1998) J Radioanal Nucl Chem 234:153

    CAS  Google Scholar 

  • Fink D (1996) In: Hahn-Meitner Inst Rep HMI-B 539, Berlin, pp 307–311

    Google Scholar 

  • Fischer CO, Kelch J, Laurenze C, Leuthe RW, Slusallek K (1987) Kerntechnik 51:9

    CAS  Google Scholar 

  • Fleming RF (1982) Int J Appl Radiat Isot 33:1263

    CAS  Google Scholar 

  • Fleming RF, Lindstrom RM (1987) J Radioanal Nucl Chem 188:35

    Google Scholar 

  • Foti S, Delucchi E, Akamian V (1972) Anal Chim Acta 60:261

    CAS  Google Scholar 

  • Frechou C, Calmet D, Bouisset P, Piccot D, Gaudry A, Yiou F, Raisbeck G (2001) J Radioanal Nucl Chem 249:133

    CAS  Google Scholar 

  • Garuti G, Meloni S, Oddone M (2000) J Radioanal Nucl Chem 245(1):17

    CAS  Google Scholar 

  • Germain P, Pinte G (1990) J Radioanal Nucl Chem 138:49

    Google Scholar 

  • Germani MS, Gokmen I, Sigleo AC, Kowalczyk GS, Olmez I, Small AM, Anderson DL, Failey MP, Gulovali MC, Choquette CE, Lepel EA, Gordon GE, Zoller WH (1980) Anal Chem 52:240

    CAS  Google Scholar 

  • Gharib AG, Fatemi K, Madadi M, Rafiee H, Darabi-zadeh Sh (2001) J Radioanal Nucl Chem 249:551

    CAS  Google Scholar 

  • Gill KP, Zaidi JH, Ahmed S (2003) Radiochim Acta 91:547

    CAS  Google Scholar 

  • Gilmore G (2008) Practical gamma-ray spectrometry, 2nd edn. Wiley, Chichester

    Google Scholar 

  • Girardi F, Sabbioni E (1968) Nucl Chem 1:169

    CAS  Google Scholar 

  • Glover SE, Filby RH, Clark SB (1998) J Radioanal Nucl Chem 234:65

    CAS  Google Scholar 

  • Glover SE, Qu H, LaMont SP, Grimm CA, Filby RH (2001) J Radioanal Nucl Chem 248:29

    CAS  Google Scholar 

  • Goerner W, Berger A, Ecker KH, Haase O, Hedrich M, Segebade C, Weidemann G, Wermann G (2001) J Radioanal Nucl Chem 248:45

    Google Scholar 

  • Goldbrunner T, Hentig R, Angloher F, Feilitzsch F (1998) J Radioanal Nucl Chem 234:43

    CAS  Google Scholar 

  • Goncalves C, Favaro DIT, De Oliveira MD, Boulet R, Vasconcellos MBA, Saiki M (1998) J Radioanal Nucl Chem 235:267

    Google Scholar 

  • Goncalves C, Favaro DIT, Melfi AJ, De Oliveira MD, Vasconcellos MBA, Fostier AH, Guimaraes JRD, Boulet R, Forti MC (2000) J Radioanal Nucl Chem 243:789

    CAS  Google Scholar 

  • Grass F, Bichler M, Dorner J, Holzner H, Ritschel A, Ramadan A, Westphal GP, Grass F, Lemmel H, Westphal GP, Gwozdz R (2001) J Trace Microprobe T 19:211

    CAS  Google Scholar 

  • Grass F, Lemmel H, Westphal GP (1994) Biol Trace Elem Res 43:33.

    Google Scholar 

  • Greenberg RR, Fleming RF, Zeisler R (1984) Environ Int 10:129

    CAS  Google Scholar 

  • Greenberg RR, Lindstrom RM, Simons DS (2000) J Radioanal Nucl Ch 245:57

    CAS  Google Scholar 

  • Grimanis AP, Kanias GD (1982) J Radioanal Nucl Chem 72:587

    CAS  Google Scholar 

  • Guinn VP (1999) J Radioanal Nucl Chem 244:23

    Google Scholar 

  • Harms J (1967) Nucl Instrum Meth 53:192

    Google Scholar 

  • Heller-Zeisler SF, Ondov JM, Zeisler R (1999) Biol Trace Elem Res 71–72:195

    Google Scholar 

  • Heller-Zeisler SF, Borgoul PV, Moore RR, Smoliar M, Suarez E, Ondov JM (2000) J Radioanal Nucl Chem 244:93

    CAS  Google Scholar 

  • Hevesy G, Levi H (1936) Math Fys Medd 14:34

    Google Scholar 

  • Heydorn K (1999) J Radioanal Nucl Chem 244:7

    Google Scholar 

  • Hillard HT (1987) J Radioanal Nucl Chem 113:125

    Google Scholar 

  • Hogdahl OT (1965) Proceedings Symposium Radiochemical Methods of Analysis, IAEA, Vienna, pp 23–40

    Google Scholar 

  • Höllriegl V, Oeh U, Röhmuss M, Gerstmann U, Roth P (2005) J Radioanal Nucl Chem 266:441

    Google Scholar 

  • Hogdahl OT (1965) Proceedings Symposium Radiochemical Methods of Analysis, IAEA, Vienna, pp 23–40

    Google Scholar 

  • Hou XL, Dahlgaard H, Rietz B, Jacobsen U, Nielsen SP (2000) J Radioanal Nucl Chem 244:87

    CAS  Google Scholar 

  • Hou XL, Dahlgaard H, Nielsen SP, Kucera J (2002) J Environm Radioactivity 61:331

    CAS  Google Scholar 

  • Hou XL, Fogh CL, Kucera J, Andersson KG, Dahlgaard H, Nielsen SP (2003) Sci Total Environm 308:97

    CAS  Google Scholar 

  • IAEA (1987) Handbook of nuclear activation data, Technical report 273. International Atomic Energy Agency, Vienna

    Google Scholar 

  • Ismail SS, Brezovits K, Klikovich W (2001) Instrum Sci Technol 29:255

    CAS  Google Scholar 

  • Itawi RK, Turrel ZR (1973) J Radioanal Nucl Chem 106:81

    Google Scholar 

  • Iyengar V (1981) J Pathol 134:173

    CAS  Google Scholar 

  • Jacimovic R, Horvat M (2004) J Radioanal Nucl Chem 259:385

    CAS  Google Scholar 

  • Jacimovic R, Makreski P, Stribilj V, Stafilov T (2008) J Radioanal Nucl Chem 278(3):795

    CAS  Google Scholar 

  • James WD, Zeisler R (2001) J Radioanal Nucl Chem 248:233

    CAS  Google Scholar 

  • Jenkins R, Gould RW, Gedcke D (1981) Quantitative X-ray spectrometry. Marcel Decker, New York, pp 208–287

    Google Scholar 

  • Jovanovic S, De Corte F, Simonits A, Moens L, Vikotic P, Hoste J (1987) J Radioan Nucl Ch Ar 113:177

    CAS  Google Scholar 

  • Kabai É, Vajda N (2002) In: Proceedings of the 14th radiochemical conference. Czech Technical University, Marianske Lazne, p 121

    Google Scholar 

  • Kalmykov StN, Aliev RA, Sapozhnikov DYu, Sapozhnikov YuA, Afinogenov AM (2004) Appl Rad Isotopes 60:595

    CAS  Google Scholar 

  • KAYZERO/SOLCOI (1996) PC software package (DSM Research, POB 18, NL-6160 MD Geleen, The Netherlands)

    Google Scholar 

  • Kim NB, Raulerson MR, James WD (1998) J Radioanal Nucl Chem 234:71

    CAS  Google Scholar 

  • Knoll GF (2000) Radiation detection and measurement, 3rd edn. Wiley, New York

    Google Scholar 

  • Kolotov VP, Dogadkin NN, Tsapizsnikov BA, Karandashev VK, Sadikov II, Saveljev BV (1996) Zh Anal Himii 51(12):1315, in Russian

    Google Scholar 

  • Kosta L (1969) Talanta 16:1297

    CAS  Google Scholar 

  • Koster-Ammerlaan MJJ, Bacchi MA, Bode P, De Nadai Fernandes EA (2008) Appl Radiat Isot 66:1964

    CAS  Google Scholar 

  • Krishnan S (2000) J Radioanal Nucl Chem 244:209

    CAS  Google Scholar 

  • Kucera J (2007) J Radioanal Nucl Chem 273:273

    CAS  Google Scholar 

  • Kucera J, Zeisler R (2005) J Radioanal Nucl Chem 263:811

    CAS  Google Scholar 

  • Kucera J, Randa Z, Soukal L (2001) J Radioanal Nucl Chem 249:109

    Google Scholar 

  • Kucera J, Iyengar GV, Randa Z, Parr RM (2004) J Radioanal Nucl Chem 259:505

    CAS  Google Scholar 

  • Kushelevsky AP (1990) In: Alfassi ZB (ed) Activation analysis, Chapter 4, vol 2. CRP Press, Boca Raton, pp 219–237

    Google Scholar 

  • Landsberger S, Peshev S (1996) J Radioanal Nucl Chem 202:201

    CAS  Google Scholar 

  • Lin X, Henkelmann R (2002) J Radioanal Nucl Chem 251:197

    CAS  Google Scholar 

  • Lindstrom RM (1994) Biol Trace Elem Res 43–44:597

    Google Scholar 

  • Lindstrom RM (2005) J Radioanal Nucl Chem 263:787

    CAS  Google Scholar 

  • Lindstrom RM, Harrison SH, Harris JM (1978) J Appl Phys 49:5903

    CAS  Google Scholar 

  • Lindstrom RM, Lindstrom DJ, Slaback LA, Langland JK (1990) Nucl Instrum Meth A 299:425

    Google Scholar 

  • Lindstrom RM, Zeisler R, Greenberg RR (2007) J Radioanal Nucl Chem 271:311

    CAS  Google Scholar 

  • Lucanikova M, Kucera J, Sebesta F, John J (2006) J Radioanal Nucl Chem 269:463

    CAS  Google Scholar 

  • Ma R, Stamatelatos IE, Yasumura S (2000) Ann NY Acad Sci 904:148

    CAS  Google Scholar 

  • Mackey EA, Gordon GE, Lindstrom RM, Anderson DL (1991) Anal Chem 63:288

    CAS  Google Scholar 

  • Mackey EA, Anderson DL, Chen-Mayer H, Downing RG, Greenberg RR, Lamaze GP, Lindstrom RM, Mildner DFR, Paul RL (1998) J Radioanal Nucl Chem 203:413

    Google Scholar 

  • Makreski P, Jacimovic R, Stribilj V, Stafilov T, Jovanovski G (2008) Radiochim Acta 96:855

    CAS  Google Scholar 

  • Minowa H, Ebihara M (2003) Anal Chim Acta 498:25

    CAS  Google Scholar 

  • Minowa H, Takeada M, Ebihara M (2007) J Radioanal Nucl Chem 272:321

    CAS  Google Scholar 

  • Mizera J, Randa Z, Kucera J (2008) J Radioanal Nucl Chem 278(3):599

    CAS  Google Scholar 

  • Moens L, De Donder J, Lin X, De Corte F, De Wispelaere A, Simonits A, Hoste J (1981) Nucl Instrum Meth 187:451

    CAS  Google Scholar 

  • Moens L, De Corte F, De Wispelaere A, Hoste J, Simonits A, Elek A, Szabo E (1984) J Radioanal Nucl Chem 82:385

    CAS  Google Scholar 

  • Molnár GL (ed) (2003) Handbook of prompt gamma activation analysis with neutron beams. Kluwer Acadamic, Dordrecht

    Google Scholar 

  • Molnár GL, Lindstrom RM (1998) In: Vértes A, Nagy S, Süvegh K (eds) Nuclear methods in mineralogy and geology, Chapter 3. Plenum Press, New York, pp 145–164

    Google Scholar 

  • Morgan WD (2000) Ann NY Acad Sci 904:128

    CAS  Google Scholar 

  • Mughabghab SF (1984) Neutron cross sections, vol 1, part B. Academic, New York

    Google Scholar 

  • Mughabghab SF, Divadeenam M, Holden NE (1981) Neutron cross sections, vol 1, part A. Academic, New York

    Google Scholar 

  • Nadkarni RA, Morrison GH (1977) J Radioanal Nucl Chem 38:435

    CAS  Google Scholar 

  • Norman BR, Becker DA (1999) J Radioanal Nucl Chem 245:91

    Google Scholar 

  • OECD (1994) Table of simple integral neutron cross section data from JEF-2.2, ENDF/B-VI, JENDL-3.2, BROND-2 and CENDL-2, JEF Report 14. OECD Nuclear Energy Agency, Paris

    Google Scholar 

  • Ohde S (1998) J Radioanal Nucl Chem 237:51

    CAS  Google Scholar 

  • Olariu A, Constantinescu M, Constantinescu O, Badica T, Popescu IV, Besliu C, Leahu D (1999) J Radioanal Nucl Chem 240:261

    CAS  Google Scholar 

  • Ondov JM, Dodd JA, Tuncel G (1990) Aerosol Sci Technol 13:249

    Google Scholar 

  • Osterc A, Stibilj V (2008) J Environm Radioactivity 99:757

    CAS  Google Scholar 

  • Oura Y, Motohashi T, Ebihara M (2007) J Radioanal Nucl Chem 271(2):305

    CAS  Google Scholar 

  • Ozaki H, Ebihara M (2007) Anal Chim Acta 583:384

    CAS  Google Scholar 

  • Park KS, Kim NB, Kim YS, Lee KY, Choi HW, Yoon YY (1988) J Radioanal Nucl Chem 123:585

    CAS  Google Scholar 

  • Parr RM (1999) J Radioanal Nucl Chem 244:17

    Google Scholar 

  • Parry SJ, Asif M, Sinclair IW (1988) J Radioanal Nucl Chem 123:593

    CAS  Google Scholar 

  • Parry SJ, Bennett BA, Benzing R, Lally AE, Birch CP, Fulker MJ (1995) Sci Total Environ 173(174):351

    Google Scholar 

  • Parry SJ, Glover SE, Qu H, LaMont SP, Grimm CA, Filby RH (2001) J Radioanal Nucl Chem 248(1):137

    CAS  Google Scholar 

  • Paul RL (1998) J Radioanal Nucl Chem 234:55

    CAS  Google Scholar 

  • Paul RL (2000) J Radioanal Nucl Chem 245:11

    CAS  Google Scholar 

  • Paul RL (2008) J Radioanal Nucl Chem 276:243

    CAS  Google Scholar 

  • Paul RL, Simons DS, Guthrie WF, Lu J (2003) Anal Chem 75:4028

    CAS  Google Scholar 

  • Pietra R, Sabbioni E, Gallorini M, Orvini E (1986) J Radioanal Nucl Chem 102:69

    CAS  Google Scholar 

  • Pomme S, Alzetta JP, Uyttenhove J, Denecke B, Arana G, Robouch P (1999) Nucl Instrum Meth Phys Res A 422:388

    CAS  Google Scholar 

  • Randa Z, Kucera J, Soukal L (2003) J Radioanal Nucl Chem 257:275

    CAS  Google Scholar 

  • Repinc U, Benedik L (2005) J Radioanal Nucl Chem 264:77

    Google Scholar 

  • Repinc U, Benedik L, Stibilj V (2005) J Radioanal Nucl Chem 264:39

    CAS  Google Scholar 

  • Rietz B, Heydorn K (1993) J Radioanal Nucl Chem 174:49

    CAS  Google Scholar 

  • Rosman KJR, Taylor PDP (1998) J Phys Chem Ref Data 27:1275–1287

    CAS  Google Scholar 

  • Rossbach M, Blaauw M, Bacchi MA, Lin X (2007) J Radioanal Nucl Chem 274:657

    CAS  Google Scholar 

  • Rouchaud JC, Fedoroff M, Revel GJ (1977) J Radioanal Nucl Chem 38:185

    CAS  Google Scholar 

  • Rouchaud JC, Fedoroff M, Revel G (1980) J Radioanal Nucl Chem 55:283

    CAS  Google Scholar 

  • Samczynski Z, Dybczynski R (2002) J Radioanal Nucl Chem 254:335

    CAS  Google Scholar 

  • Samsahl K (1966) Nukleonik 8:252

    CAS  Google Scholar 

  • Schmid W, Krivan V (1986) Anal Chem 58:1468

    CAS  Google Scholar 

  • Schuhmacher J, Maier-borst W, Hauser H (1977) J Radioanal Nucl Chem 37:503

    CAS  Google Scholar 

  • Shani G (1990) In: Alfassi ZB (ed) Activation analysis, Chapter 5, vol 2. CRP Press, Boca Raton, pp 239–297

    Google Scholar 

  • Shoop DM, Blotzky AJ, Rack EP (1998) J Radioanal Nucl Chem 236(1–2):103

    CAS  Google Scholar 

  • Simonits A, De Corte F, Hoste J (1975) J Radioanal Chem 24:31

    CAS  Google Scholar 

  • Simonits A, Moens L, De Corte F, De Wispelaere A, Elek A, Hoste J (1980) J Radioanal Chem 60:461

    CAS  Google Scholar 

  • Slejkovec Z, Falnoga I, Goessler W, van Elteren JT, Raml R, Podgornik H, Cernelc P (2008) Anal Chim Acta 607:83

    CAS  Google Scholar 

  • St-Pierre J, Kennedy G (1998) J Radioanal Nucl Chem 234:51–54

    CAS  Google Scholar 

  • St-Pierre J, Kennedy G (2006) Nucl Instrum Meth A 564:669

    Google Scholar 

  • St-Pierre J, Kennedy G (2007) J Radioanal Nucl Chem 271:283

    CAS  Google Scholar 

  • Strijckmans K (1994) In: Alfassi ZB (ed) Chemical analysis by nuclear methods, Chapter 10. Wiley, Chichester, pp 215–252

    Google Scholar 

  • Studier MH (1962) J Inorg Nucl Chem 24:755

    Google Scholar 

  • Suzuki N (1990) In: Alfassi ZB (ed) Activation analysis, Chapter 9, vol 1. CRP Press, Boca Raton, pp 146–164

    Google Scholar 

  • Szidat S, Schmidt A, Handl J, Jakob D, Michel R, Synal HA, Suter M (2000) J Radioanal Nucl Chem 244:45

    CAS  Google Scholar 

  • Takeda M, Minowa H, Ebihara M (2007) J Radioanal Nucl Chem 272:363

    CAS  Google Scholar 

  • Theimer KH, Krivan V (1990) Anal Chem 62:2722

    CAS  Google Scholar 

  • Tian W, Ni B, Wang P, Nie H, Cao L, Zhang Y (2001) J Radioanal Nucl Chem 249:25

    CAS  Google Scholar 

  • Upp DL, Keyser RM, Gedcke DA, Twomey TR, Bingham RD (2001) J Radioanal Nucl Chem 248:377

    CAS  Google Scholar 

  • Van Sluijs R, Bossus DAW, Konings J, De Corte F, De Wispelaere A, Simonits A (1997) J Radioanal Nucl Chem 215:283

    Google Scholar 

  • Van Sluijs R, Bossus D, Blaauw M, Kennedy G, De Wispelaere A, Van Lierde S, De Corte F (2000) J Radioanal Nucl Chem 244:675

    Google Scholar 

  • Vermaercke P, Robouch P, Eguskiza M, De Corte F, Kennedy G, Smodis B, Jacimovic R, Yonezawa C, Matsue H, Lin X, Blaauw M, Kucera J (2006) Nucl Instrum Meth A564:675

    Google Scholar 

  • VIM (2007) International vocabulary of basic and general terms in metrology. International Organization for Standardization, Geneva

    Google Scholar 

  • Westcott CH (1955) J Nucl Energy 2:59

    CAS  Google Scholar 

  • Westphal GP (1981) J Radioanal Chem 61:111

    Google Scholar 

  • Westphal GP, Lemmel H (2008) J Radioanal Nucl Chem 276:601

    CAS  Google Scholar 

  • Yonezawa C (2001) In: Alfassi ZB (ed) Non-destructive elemental analysis, Chapter 2. Blackwell Sciences, Oxford, pp 58–114

    Google Scholar 

  • Zaidi JH, Arif M, Fatima I, Ahmed S, Qureshi IH (1999a) J Radioanal Nucl Chem 241:123

    CAS  Google Scholar 

  • Zaidi JH, Waheed S, Ahmed S (1999b) J Radioanal Nucl Chem 242:259

    CAS  Google Scholar 

  • Zaidi JH, Arif M, Fatima I, Qureshi IH (2001) J Radioanal Nucl Chem 253:459

    Google Scholar 

  • Zaidi JH, Fatima I, Arif M (2002) Radiochim Acta 90:889

    CAS  Google Scholar 

  • Zeisler R (1986) J Res Natl Inst Stan 91:75

    Google Scholar 

  • Zeisler R (2000) J Radioanal Nucl Chem 244:507

    CAS  Google Scholar 

  • Zeisler R, Greenberg RR (1982) J Radioanal Chem 75:27

    CAS  Google Scholar 

  • Zeisler R, Guinn VP (1990) Nuclear analytical methods in the life sciences. The Humana, Clifton

    Google Scholar 

  • Zeisler R, Young I (1987) J Radioanal Nucl Chem 113:97

    CAS  Google Scholar 

  • Zeisler R, Lindstrom RM, Greenberg RR (2005) J Radioanal Nucl Chem 263:315

    CAS  Google Scholar 

  • Ziegler JF (1977) The stopping and ranges of ions in matter. Pergamon Press, New York

    Google Scholar 

  • Ziegler JF, Cole GW, Baglin JEE (1972) J Appl Phys 43:3809

    CAS  Google Scholar 

  • Ziegler JF, Ziegler MD, Biersack JP (2008) SRIM – the stopping and range of ions in matter, LuLu Press. The software package version SRIM-2008.04 is available from www.SRIM.org

Download references

Acknowledgments

The authors wish to thank Donna O’Kelly, NIST Analytical Chemistry Division, and David F. R. Mildner, NIST Center for Neutron Research, for their critical reading of the manuscript and valuable suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Zeisler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this entry

Cite this entry

Zeisler, R., Vajda, N., Kennedy, G., Lamaze, G., Molnár, G.L. (2011). Activation Analysis. In: Vértes, A., Nagy, S., Klencsár, Z., Lovas, R.G., Rösch, F. (eds) Handbook of Nuclear Chemistry. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-0720-2_30

Download citation

Publish with us

Policies and ethics