Skip to main content

Autonomous In-door Vehicles

  • Reference work entry
  • First Online:
Handbook of Manufacturing Engineering and Technology

Abstract

This chapter gives an overview to the state-of-art technology of autonomous mobile robots and focuses more specifically on autonomous indoor vehicles (AIVs) for the purpose of being more relevant to the manufacturing and industrial automation applications. Among the various locomotion designs, this chapter only introduces wheeled AIVs as wheeled platforms are predominant in the current commercially available AIVs. Four key research areas of wheeled AIVs, (1) design and modeling, (2) motion control, (3) sensing, (4) navigation, are reviewed in detail. The major AIV suppliers along with their key AIV products are then surveyed. The chapter ends with concluding remarks and a prediction of the trends of future AIV development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • d’Andréa-Novel B, Campion G, Bastin G (1995) Control of nonholonomic wheeled mobile robots by state feedback linearization. Int J Robot Res 14:543–559

    Article  Google Scholar 

  • Asada HH, Wada M (1998) The superchair: a holonomic omnidirectional wheelchair with a variable footprint mechanism. Progress report, total home automation and health/elderly care consortium, 31 Mar 1998

    Google Scholar 

  • Aulinas J, Petillot Y, Salvi J, Lladó X (2008) The SLAM problem: a survey. In: International congress of the catalan association of artificial intelligence, Sant Martí d’Empúries (Spain) October 22–24, 2008

    Google Scholar 

  • Bezick SM, Pue AJ (2010) Inertial navigation for guided missile systems. J Hopkins Apl Tech Dig 28(4):331–342

    Google Scholar 

  • Borenstein J (1995) Internal correction of dead-reckoning errors with the compliant linkage vehicle. J Robot Syst 12(4):257–273

    Article  Google Scholar 

  • Borenstein J, Koren Y (1991) The vector field histogram-fast obstacle avoidance for mobilerobots. Robot Autom IEEE Trans 7(3):278–288

    Article  Google Scholar 

  • Brockett RW (1983) Asymptotic stability and feedback stabilization. In: Differential geometric control theory. Birkhäuser, Boston, pp 181–191

    Google Scholar 

  • Campion G, Bastin G, Dandrea B (1996) Structural properties and classification of kinematic and dynamic models of wheeled mobile robots. IEEE Trans Robot Autom 12(1):47

    Article  Google Scholar 

  • Canudas de Wit C, Khennouf H, Samson C, Sordalen O (1993) Nonlinear control design for mobile robots. Recent trends in mobile robotics. In: Zheng YF (ed) Word scientific series in robotics and automated systems, world scientific, vol 11, pp 121–156

    Google Scholar 

  • Cheng Y, Maimone MW (2006) Visual odometry on the mars exploration rovers. IEEE Robot Autom Mag: 54–62

    Google Scholar 

  • Courbon JJ, Mezouar Y, Guenard N, Martinet P (2010) Vision-based navigation of unmanned aerial vehicles. Control Eng Pract 18:789–799

    Article  Google Scholar 

  • De Luca A, Oriolo G, Samson C (1998) Feedback control of a nonholonomic carlike robot. In: Laumond JP (ed) Robot motion planning and control, vol 229, Lecture notes in control and information sciences. Springer, London, pp 171–253

    Chapter  Google Scholar 

  • De Luca A, Oriolo G, Vendittelli M (2001) Control of wheeled mobile robots: an experimental overview. Ramsete 270:181–226

    Article  Google Scholar 

  • Dellaert F, Fox D, Burgard W, Thrun S (1999) Monte carlo localization for mobile robots. In: Proceedings of the IEEE international conference on robotics and automation, vol 2, IEEE, Marriott Hotel, Renaissance Center, Detroit, Michigan

    Google Scholar 

  • Dijkstra EW (1959) A note on two problems in connexion with graphs. Numer Math 1:269–271

    Article  MATH  MathSciNet  Google Scholar 

  • Doucet A, de Freitas N, Murphy K, Russel S (2000) Rao-blackwellized particle filtering for dynamic Bayesian networks. In: Proceedings of the conference on uncertainty in artificial intelligence (UAI), Stanford, CA, USA

    Google Scholar 

  • Engelhard N, Endres F et al (2012) Real-time 3D visual SLAM with a hand-held RGB-D camera In: Proceedings of the ICRA, St. Paul, MN, USA

    Google Scholar 

  • Evennou F, Marx F (2006) Advanced integration of WiFi and inertial navigation systems for indoor mobile positioning. EURASIP J Appl Signal Process: 1–11

    Google Scholar 

  • Fojtu S, Havlena M (2012) Nao robot localization and navigation using fusion of odometry and visual sensor data. In: International conference on intelligent robotics and applications. Springer-Verlag, Berlin, pp 427–438

    Google Scholar 

  • Gong J, Duan Y, Man Y, Xiong G (2007) VPH+: an enhanced vector polar histogram method for mobile robot obstacle avoidance. In: Proceedings of the ICMA, Harbin, China

    Google Scholar 

  • Grisetti G, Kummerle R et al (2010) Hierarchical optimization on manifolds for online 2D and 3D mapping. In: Proceedings of the ICRA, Anchorage, Alaska

    Google Scholar 

  • Hahnel D, Burgard W, Fox D, Thrun S (2003) An efficient FastSLAM algorithm for generating maps of large-scale cyclic environment from raw laser range measurements. In: International conference on intelligent robots and systems, Las Vegas, USA, vol 1, pp 206–211

    Google Scholar 

  • Hart PE, Nilsson NJ, Raphael B (1968) A formal basis for the heuristic determination of minimum cost paths. IEEE Trans Syst Sci Cybern SSC4 4(2):100–107

    Article  Google Scholar 

  • Helmick DM, Cheng Y (2004) Path following using visual odometry for a mars rover in high slip environments. In: Proceedings 2004 I.E. Aerospace Conference, Big Sky, MT, pp 772–789

    Google Scholar 

  • Henry P, Krainin M et al (2010) RGB-D Mapping: using depth camera for dense 3D modeling of indoor environments. In: Proceedings of the ISER, Delhi, India

    Google Scholar 

  • Hightower JA (2001) Design and Calibration of the SpotON Ad-Hoc Location Sensing System. UW CSE 00–02–02, University of Washington, Department of Computer Science and Engineering, Seattle, WA

    Google Scholar 

  • Jaulin L (2001) Path planning using intervals and graphs. Reliab Comput 7(1):1–15

    Article  MATH  MathSciNet  Google Scholar 

  • Javier Garcia V, Zeev Zalevsky H (2008) Patent no. US7433024B2. United States of America

    Google Scholar 

  • Julier SJ, Uhlmann JK (1997) A new extension of the Kalman filter to nonlinear systems. In: Proceedings of AeroSense, Orlando, Florida

    Google Scholar 

  • Konolige K, Agrawal M (2010) Large-scale visual odometry for rough terrain. In: 13th International symposium of robotics research, Hiroshima, Japan, pp 201–212

    Google Scholar 

  • Lavalle SM (2006) Planning algorithms. Cambridge University Press, New York

    Google Scholar 

  • Lee S (2009) Use of infrared light reflecting landmarks for localization. Industrial Robot: An International Journal 138–145

    Google Scholar 

  • Luo RH, Hong BR, Li MH (2004) Grid map building based on prediction of local features. J Harbin Inst Technol 36(7):877–879

    Google Scholar 

  • Mason, Mechanics of Manipulation (CMU), Spring 2013, lecture 5 slides available online: http://www.cs.cmu.edu/afs/cs/academic/class/16741-s07/www/lecture5.pdf

  • Merlo S, Norgia M (2000) Fiber Gyroscope Principles. In Handbook of fibre optic sensing technology. University of Pavia/Wiley, Italy, John Wiley & Sons Ltd

    Google Scholar 

  • Montemerlo M, Thrun S, Koller D, Wegbreit B (2003) FastSLAM 2.0: an improved particle filtering algorithm for simultaneous localization and mapping that provably converges. In: International joint conferences on artificial intelligence, Acapulco, Mexico

    Google Scholar 

  • Moustafa Youssef AA (2005) The Horus WLAN Location Determination System. 3rd international conference on Mobile systems, applications, and services (pp. 205–218). New York, NY, USA: Association for Computing Machinery

    Google Scholar 

  • Palacin J, Valgaon I (2006) The optical mouse for indoor mobile robot odometry measurement. Sensors Actuator 126:141–147

    Article  Google Scholar 

  • Park C, Chung H, Lee JG (2000) Point stabilization of mobile robots via state-space exact feedback linearization. Robot Comput Integ Manuf 16(5):353–363

    Article  Google Scholar 

  • Qingxiao Yu CY (2012) An autonomous restaurant service robot. Industrial Robot: An International Journal, 271–281

    Google Scholar 

  • Rencken W (1993) Concurrent localization and map building for mobile robots using ultrasonic sensors. In: Proceedings of the IEEE/RSJ international conference on intelligent robotics and systems, Yokohama

    Google Scholar 

  • Samson C (1993) Time-varying feedback stabilization of car-like wheeled mobile robots. Int J Robot Res 12(1):55–64

    Article  MathSciNet  Google Scholar 

  • Samson C (1995) Control of chained systems. Application to path following and time-varying point-stabilization of mobile robots. IEEE Trans Automat Control 40(1):64–77

    Article  MATH  MathSciNet  Google Scholar 

  • Shenoy SJT (2005) Simultaneous localization and mobile robot navigation in a hybrid sensor network. Intelligent Robots and Systems (pp. 1636–41). IEEE, Edmonton, Alberta, Canada

    Google Scholar 

  • Siegwart R, Nourbakhsh IR (2004) Introduction to autonomous mobile robots. MIT Press, Cambridge, MA. ISBN 0-262-19502-X

    Google Scholar 

  • Sung-Bu Kim JL (2007). Precise indoor localization system for a mobile robot using auto calibration algorithm. 13th International conference on advanced robotics. Jeju, South Korea

    Google Scholar 

  • Tenmoku RK (2003) A wearable augmented reality system for navigation using positioning infrastructures and a pedometer. Proceedings of the 2nd IEEE/ACM International Symposium on Mixed and Augmented Reality, Washington, DC, USA

    Google Scholar 

  • Thrun S (2002) Robotic mapping: a survey. In: Exploring artificial intelligence in the new millenium. Morgan Kaufmann, San Francisco

    Google Scholar 

  • Ulrich I, Borenstein J (1998) VFH+: reliable obstacle avoidance for fast mobile robots. Robotics and Automation, Leuven, Belgium

    Google Scholar 

  • Yamano KA (2004) Self-localization of mobile robots with RFID system by using support vector machine. Intelligent Robotics and Systems (pp. 3756–3761), Sendai, Japan, IEEE

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Feng Dong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag London

About this entry

Cite this entry

Dong, J.F., Sabastian, S.E., Lim, T.M., Li, Y.P. (2015). Autonomous In-door Vehicles. In: Nee, A. (eds) Handbook of Manufacturing Engineering and Technology. Springer, London. https://doi.org/10.1007/978-1-4471-4670-4_103

Download citation

Publish with us

Policies and ethics