Skip to main content

Mechanical Design and Control for Speed and Precision

  • Living reference work entry
  • First Online:
Encyclopedia of Systems and Control
  • 227 Accesses

Abstract

This chapter discusses mechanical design techniques and control approaches that can be used to achieve high speed and fine precision control of micro- and nanoscale positioning systems. By carefully using these design considerations, undesirable effects such as thermal drift, mechanical resonances, and off-axis motion can be minimized. Additionally, control systems can be designed to improve the positioning capabilities in open-loop and closed-loop configurations, allowing for high-bandwidth motion control while minimizing nonlinearities, such as hysteresis, and detrimental external disturbances.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Bibliography

  • Binnig G, Rohrer H, Gerber C, Weibel E (1982) Surface studies by scanning tunneling microscopy. Phys Rev Lett 49(1):57–61

    Article  Google Scholar 

  • Boeren F, Bruijnen D, van Dijk N, Oomen T (2014) Joint input shaping and feedforward for point-to-point motion: automated tuning for an industrial nanopositioning system. Mechatronics 24(6):572–581

    Article  Google Scholar 

  • Bozchalooi IS, Houck AC, AlGhamdi J, Youcef-Toumi K (2016) Design and control of multi-actuated atomic force microscope for large-range and high-speed imaging. Ultramicroscopy 160:213–224

    Article  Google Scholar 

  • Cheng L, Liu W, Hou Z-G, Yu J, Tan M (2015) Neural-network-based nonlinear model predictive control for piezoelectric actuators. IEEE Trans Ind Electron 62(12):7717–7727

    Article  Google Scholar 

  • Clayton GM, Tien S, Leang KK, Zou Q, Devasia S (2009) A review of feedforward control approaches in nanopositioning for high speed SPM. ASME J Dyn Syst Meas Control 131(6):061101 (19 pages)

    Article  Google Scholar 

  • Croft D, Stilson S, Devasia S (1999) Optimal tracking of piezo-based nanopositioners. Nanotechnology 10(2):201

    Article  Google Scholar 

  • Devasia S, Eleftheriou E, Moheimani SOR (2007) A survey of control issues in nanopositioning. IEEE Trans Control Syst Technol 15(5):802–823

    Article  Google Scholar 

  • Fantner GE, Schitter G, Kindt JH, Ivanov T, Ivanova K, Patel R, Holten-Anderson H, Adams J, Thurner PJ, Rangelow IW, Hansma PK (2006) Components for high speed atomic force microscopy. Ultramicroscopy 106:881–887

    Article  Google Scholar 

  • Fleming AJ, Leang KK (2014) Design, modeling and control of nanopositioning systems. Springer, Cham

    Book  Google Scholar 

  • Gan J, Zhang X (2019) A review of nonlinear hysteresis modeling and control of piezoelectric actuators. AIP Adv 9(4):040702

    Article  Google Scholar 

  • Kenton BJ, Leang KK (2012) Design and control of a three-axis serial-kinematic high-bandwidth nanopositioner. IEEE/ASME Trans Mechatron 17(2):356–369

    Article  Google Scholar 

  • Maroufi M, Alemansour H, Coskun MB, Moheimani SR (2018) An adjustable-stiffness MEMS force sensor: design, characterization, and control. Mechatronics 56:198–210

    Article  Google Scholar 

  • Nagel WS, Leang KK (2017) Design of a dual-stage, three-axis hybrid parallel-serial-kinematic nanopositioner with mechanically mitigated cross-coupling. In: 2017 IEEE International Conference on Advanced Intelligent Mechatronics (AIM), pp 706–711. IEEE.

    Google Scholar 

  • Shan Y, Leang KK (2012) Dual-stage repetitive control with Prandtl-Ishlinskii hysteresis inversion for piezo-based nanopositioning. Mechatronics 22:271–281

    Article  Google Scholar 

  • Tien S, Zou Q, Devasia S (2005) Iterative control of dynamics-coupling-caused errors in piezoscanners during high-speed AFM operation. IEEE Trans Control Syst Technol 13(6):921–931

    Article  Google Scholar 

  • Wang G, Xu Q (2018) Sliding mode control with disturbance rejection for piezoelectric nanopositioning control. In: 2018 Annual American Control Conference (ACC), pp 6144–6149. IEEE.

    Google Scholar 

  • Wu Y, Shi J, Su C, Zou Q (2009) A control approach to cross-coupling compensation of piezotube scanners in tapping-mode atomic force microscope imaging. Rev Sci Instrum 80(4):0433709

    Article  Google Scholar 

  • Yi S, Li T, Zou Q (2018) Active control of acoustics-caused nano-vibration in atomic force microscope imaging. Ultramicroscopy 195:101–110

    Article  Google Scholar 

  • Yong Y, Moheimani SOR, Kenton BJ, Leang KK (2013) Invited review: high-speed flexure-guided nanopositioning: mechanical design and control issues. Rev Sci Instrum 83:121101

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kam K. Leang .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer-Verlag London Ltd., part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Nagel, W., Leang, K. (2019). Mechanical Design and Control for Speed and Precision. In: Baillieul, J., Samad, T. (eds) Encyclopedia of Systems and Control. Springer, London. https://doi.org/10.1007/978-1-4471-5102-9_100040-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-5102-9_100040-1

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-5102-9

  • Online ISBN: 978-1-4471-5102-9

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics