Skip to main content

Self-organized Criticality and Cellular Automata

  • Reference work entry
Computational Complexity

Article Outline

Glossary

Definition of the Subject

Introduction

Self-Organized Criticality

Cellular Automata

The Sandpile Revisited

Future Directions

Acknowledgments

Bibliography

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,500.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,399.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Abelian group :

A mathematical group wherein all the elements commute.

Avalanche :

A possibly large disturbance induced in a system by a small perturbation.

Cellular automaton :

This refers to the dynamics of a collection of cells each of which can be in a finite set of states.The evolution is discrete, with the state of a cell at the next time step being dependent only on its previous state and that of its neighbors.

Chaos :

The tendency of a system of a few degrees of freedom to exhibit highly erratic behavior characterized by an infinite range of time scales.

Self‐organized criticality:

The tendency of certain discrete and dissipative dynamical systems to evolve to a state where changes occur over all possible length scales.

Bibliography

Primary Literature

  1. Bak P, Tang C, Wiesenfeld K (1987) Phys Rev Lett 59:381; (1988) Phys Rev A 38:3645

    Google Scholar 

  2. Bak P, Creutz M (1994) Fractals and self‐organized criticality. In: Bunde A, Havlin S (eds) Fractals in Science. Springer, Berlin, pp 26–47

    Google Scholar 

  3. Paczuski M, Maslov S, Bak P (1996) Phys Rev E 53:414

    Article  Google Scholar 

  4. Nagel K, Paczuski M (1995) Phys Rev E 51:2909

    Article  Google Scholar 

  5. Levy M, Solomon S, Ram G (1996) Int J Mod Phys C 7:65

    Article  Google Scholar 

  6. The latest version of the xtoys package is available at http://thy.phy.bnl.gov/www/xtoys/xtoys.html

  7. Creutz M (1997) Cellular automata and self organized criticality. In: Bhanot G, Chen S, Seiden P (eds) Some new directions in science on computers.World Scientific, Singapore, pp 147–169

    Google Scholar 

  8. Christensen K (1992) Ph D Thesis, University of Aarhus

    Google Scholar 

  9. Frette V et al (1996) Nature 379:49

    Article  Google Scholar 

  10. Wolfram S (1986) Theory and Applications of Cellular Automata. World Scientific, Singapore

    MATH  Google Scholar 

  11. Toffoli T, Margolus N (1987) Cellular Automata Machines. MIT Press, Cambridge

    Google Scholar 

  12. Bogosian B (1993) Nucl Phys B, Proc Suppl 30:204

    Article  Google Scholar 

  13. Berlekamp E, Conway J, Guy R (1982) Winning Ways for your Mathematical Plays, vol 2.Academic Press, New York

    MATH  Google Scholar 

  14. Wikipedia (2007) Conway's Game of Life. http://en.wikipedia.org/wiki/Conway's_life.Accessed 6 Apr 2007

  15. Bak P, Chen K, Creutz M (1989) Nature 342:780

    Article  Google Scholar 

  16. Creutz M (1992) Nuclear Phys B, Proc Suppl 26:252

    Article  Google Scholar 

  17. Bennett C, Bourzutschy M (1991) Nature 350:468

    Article  Google Scholar 

  18. Gardner M (1983) Wheels, Life, and Other Mathematical Amusements. W.H. Freeman, New York

    MATH  Google Scholar 

  19. Wikipedia (2007) Garden of Eden pattern. http://en.wikipedia.org/wiki/Garden_of_Eden_pattern.Accessed 6 Apr 2007

  20. Press W, Teukolsky S, Vetterling W, Flannery B (1988) Numerical Recipes in C. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  21. Clar S, Drossel B, Schwabl F (1996) Phys J Cond Mat 8:6803

    Article  Google Scholar 

  22. Dhar D (1990) Phys Rev Lett 64:1613

    Article  MathSciNet  MATH  Google Scholar 

  23. Dhar D, Ramaswamy R (1989) Phys Rev Lett 63:1659

    Article  MathSciNet  Google Scholar 

  24. Dhar D, Majumdar SN (1990) Phys J A 23:4333

    Article  MathSciNet  Google Scholar 

  25. Majumdar SN, Dhar D (1992) Physica A 185:129

    Article  Google Scholar 

  26. Creutz M (1991) Comp Phys 5:198

    Article  Google Scholar 

  27. Anderson R et al (1989) Amer Math Monthly 96:981; Björner A, Lovász L, Shor P (1991) Europ J Combinatorics 12:283; Eriksson K (1996) SIAM J Discret Math 9:118

    Google Scholar 

  28. Goles E, Margenstern M (1996) Int J Mod Phys C 7:113

    Article  MathSciNet  MATH  Google Scholar 

Books and Reviews

  1. Bak P (1996) How Nature Works: The Science of Self‐Organised Criticality.Springer, Berlin

    Google Scholar 

  2. Gore A (1992) Earth in the Balance: Ecology and the Human Spirit.Plume, Boston

    Google Scholar 

  3. Jensen HJ (1998) Self‐Organized Criticality: Emergent Complex Behavior in Physical and Biological Systems. Cambridge, Cambridge

    Book  MATH  Google Scholar 

  4. Toffoli T, Margolus N (1987) Cellular Automata Machines: A New Environment for Modeling.MIT Press, Cambridge

    Google Scholar 

  5. Wolfram S (1994) Cellular Automata and Complexity: Collected Papers. Westview Press, Boulder

    MATH  Google Scholar 

Download references

Acknowledgments

I am thankful for discussions with many people, but most particularly P. Bak, D. Dar, E. Fredkin, N. Margolis, M. Paczuski, T. Toffoli,F. Van Scoy, and G. Vichniac.This manuscript has been authored under contract number DE-AC02-76CH00016 with the US Department of Energy.Accordingly, the US Government retains a non‐exclusive, royalty‐free license to publish or reproduce the published form of thiscontribution, or allow others to do so, for US Government purposes.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag

About this entry

Cite this entry

Creutz, M. (2012). Self-organized Criticality and Cellular Automata. In: Meyers, R. (eds) Computational Complexity. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-1800-9_171

Download citation

Publish with us

Policies and ethics