Skip to main content
  • 590 Accesses

Article Outline

Glossary

Definition of the Subject

Introduction

Origins of Symbolic Dynamics: Modeling of Dynamical Systems

Shift Spaces and Sliding Block Codes

Shifts of Finite Type and Sofic Shifts

Entropy and Periodic Points

The Conjugacy Problem

Other Coding Problems

Coding for Data Recording Channels

Connections with Information Theory and Ergodic Theory

Higher Dimensional Shift Spaces

Future Directions

Bibliography

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 600.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Almost conjugacy:

(Sect. “Other Coding Problems”) A common extension of two shift spaces given by factor codes that are one-to-one almost everywhere.

Automorphism:

(Sect. “The Conjugacy Problem”) An invertible sliding block code from a shift space to itself; equivalently, a shift‐commuting homeomorphism from a shift space to itself; equivalently, a topological conjugacy from a shift space to itself.

Dimension group:

(Sect. “The Conjugacy Problem”) A particular group associated to a shift of finite type. This group, together with a distinguished sub‐semigroup and an automorphism, captures many invariants of topological conjugacy for shifts of finite type.

Embedding:

(Sect. “Shift Spaces and Sliding Block Codes”) A one-to-one sliding block code from one shift space to another; equivalently, a one-to-one continuous shift‐commuting mapping from one shift space to another.

Factor map:

(Sect. “Shift Spaces and Sliding Block Codes”) An onto sliding block code from one shift space to another; equivalently, an onto continuous shift‐commuting mapping from one shift space to another. Sometimes called Factor Code.

Finite equivalence:

(Sect. “Other Coding Problems”) A common extension of two shift spaces given by finite-to-one factor codes.

Full shift:

(Sect. “Shift Spaces and Sliding Block Codes”) The set of all bi‐infinite sequences over an alphabet (together with the shift mapping). Typically, the alphabet is finite.

Higher dimensional shift space:

(Sect. “Higher Dimensional Shift Spaces”) A set of bi‐infinite arrays of a given dimension, determined by a collection of finite forbidden arrays. Typically, the alphabet is finite.

Markov partition:

(Sect. “Origins of Symbolic Dynamics: Modeling of Dynamical Systems”) A finite cover of the underlying phase space of a dynamical system, which allows the system to be modeled by a shift of finite type. The elements of the cover are closed sets, which are allowed to intersect only on their boundaries.

Measure of maximal entropy:

(Sect. “Connections with Information Theory and Ergodic Theory”) A shift‐invariant measure of maximal measure‐theoretic entropy on a shift space. Its measure‐theoretic entropy coincides with the topological entropy of the shift space.

Road problem:

(Sect. “Other Coding Problems”) A recently‐solved classical problem in symbolic dynamics, graph theory and automata theory.

Run‐length limited shift:

(Sect. “Coding for Data Recording Channels”) The set of all bi‐infinite binary sequences whose runs of zeros, between two successive ones, are bounded below and above by specific numbers.

Shift equivalence:

(Sect. “The Conjugacy Problem”) An equivalence relation on defining matrices for shifts of finite type. This relation characterizes the corresponding shifts of finite type, up to an eventual notion of topological conjugacy.

Shift space:

(Sect. “Shift Spaces and Sliding Block Codes”) A set of bi‐infinite sequences determined by a collection of finite forbidden words; equivalently, a closed shift‐invariant subset of a full shift.

Shift of finite type:

(Sect. “Shifts of Finite Type and Sofic Shifts”) A set of bi‐infinite sequences determined by a finite collection of finite forbidden words.

Sliding block code:

(Sect. “Shift Spaces and Sliding Block Codes”) A mapping from one shift space to another determined by a finite sliding block window; equivalently, a continuous shift‐commuting mapping from one shift space to another.

Sofic shift:

(Sect. “Shifts of Finite Type and Sofic Shifts”) A shift space which is a factor of a shift of finite type; equivalently, a set of bi‐infinite sequences determined by a finite directed labeled graph.

State splitting:

(Sect. “The Conjugacy Problem”) A splitting of states in a finite directed graph that creates a new graph, whose vertices are the split states. The operation that creates the new graph from the original graph is a basic building block for all topological conjugacies between shifts of finite type.

Strong shift equivalence:

(Sect. “The Conjugacy Problem”) An equivalence relation on defining matrices for shifts of finite type. In principle, this relation characterizes the corresponding shifts of finite type, up to topological conjugacy.

Topological conjugacy:

(Sect. “Shift Spaces and Sliding Block Codes”) A bijective sliding block code from one shift space to another; equivalently, a shift‐commuting homeomorphism from one shift space to another. Sometimes called conjugacy.

Topological entropy:

(Sect. “Entropy and Periodic Points”) The asymptotic growth rate of the number of finite sequences of given length in a shift space (as the length goes to infinity).

Zeta function:

(Sect. “Entropy and Periodic Points”) An expression for the number of periodic points of each given period in a shift space.

Bibliography

  1. Adler RL, Coppersmith D, Hassner M (1983) Algorithms for sliding block codes – an application, of symbolic dynamics to information theory. Trans IEEE Inf Theory 29:5–22

    Article  MathSciNet  MATH  Google Scholar 

  2. Adler RL, Goodwyn LW, Weiss B (1977) Equivalence of topological Markov shifts. Isr J Math 27:48–63

    Article  MathSciNet  Google Scholar 

  3. Adler R, Konheim A, McAndrew M (1965) Topological entropy. Trans Amer Math Soc 114:309–319

    Article  MathSciNet  MATH  Google Scholar 

  4. Adler R, Marcus B (1979) Topological entropy and equivalence of dynamical systems. Mem Amer Math Soc 219. AMS, Providence

    Google Scholar 

  5. Adler R, Weiss B (1970) Similarity of automorphisms of the torus. Mem Amer Math Soc 98. AMS, Providence

    Google Scholar 

  6. Aho AV, Hopcroft JE, Ullman JD (1974) The design and analysis of computer algorithms. Addison‐Wesley, Reading

    MATH  Google Scholar 

  7. Ashley J (1988) A linear bound for sliding block decoder window size. Trans IEEE Inf Theory 34:389–399

    Article  MathSciNet  MATH  Google Scholar 

  8. Ashley J (1996) A linear bound for sliding block decoder window size, II. Trans IEEE Inf Theory 42:1913–1924

    Article  MathSciNet  MATH  Google Scholar 

  9. Ashley J (1991) Resolving factor maps for shifts of finite type with equal entropy. Ergod Theory Dynam Syst 11:219–240

    Article  MathSciNet  MATH  Google Scholar 

  10. Béal M-P (1990) The method of poles: a coding method for constrained channels. Trans IEEE Inf Theory 36:763–772

    Google Scholar 

  11. Béal M-P (1993) Codage symbolique. Masson, Paris

    Google Scholar 

  12. Béal M-P (2003) Extensions of the method of poles for code construction. Trans IEEE Inf Theory 49:1516–1523

    Google Scholar 

  13. Bedford T (1986) Generating special Markov partitions for hyperbolic toral automorphisms using fractals. Ergod Theory Dynam Syst 6:325–333

    Article  MathSciNet  MATH  Google Scholar 

  14. Berger R (1966) The undecidability of the Domino problem. Mem Amer Math Soc. AMS, Providence

    Google Scholar 

  15. Berstel J, Perrin D (1985) Theory of codes. Academic Press, New York

    MATH  Google Scholar 

  16. Blanchard P, Devaney R, Keen L (2004) Complex dynamics and symbolic dynamics. In: Williams S (ed) Symbolic dynamics and its applications. Proc Symp Appl Math. AMS, Providence, pp 37–59

    Chapter  Google Scholar 

  17. Blanchard F, Maass A, Nogueira A (2000) Topics in symbolic dynamics and applications. In: Blanchard F, Maass A, Nogueira A (eds) LMS Lecture Notes, vol 279. Cambridge University Press, Cambridge

    Google Scholar 

  18. Bowen R (1970) Markov partitions for Axiom A diffeomorphisms. Amer J Math 92:725–747

    Article  MathSciNet  MATH  Google Scholar 

  19. Bowen R (1973) Symbolic dynamics for hyperbolic flows. Amer J Math 95:429–460

    Article  MathSciNet  MATH  Google Scholar 

  20. Bowen R, Franks J (1977) Homology for zero‐dimensional basic sets. Ann Math 106:73–92

    Article  MathSciNet  MATH  Google Scholar 

  21. Bowen R, Lanford OE (1970) Zeta functions of restrictions of the shift transformation. Proc Symp Pure Math AMS 14:43–50

    Article  MathSciNet  Google Scholar 

  22. Boyle M (1983) Lower entropy factors of sofic systems. Ergod Theory Dynam Syst 3:541–557

    Article  MathSciNet  MATH  Google Scholar 

  23. Boyle M (1993) Symbolic dynamics and matrices. In: Brualdi R et al (eds) Combinatorial and graph theoretic problems in linear algebra. IMA Vol Math Appl 50:1–38

    Article  MathSciNet  Google Scholar 

  24. Boyle M (2007) Open problems in symbolic dynamics. Contemponary Math (to appear)

    Google Scholar 

  25. Boyle M, Handelman D (1991) The spectra of nonnegative matrices via symbolic dynamics. Ann Math 133:249–316

    Article  MathSciNet  MATH  Google Scholar 

  26. Boyle M, Krieger W (1986) Almost Markov and shift equivalent sofic systems. In: Aleixander J (ed) Proceedings of Maryland Special Year in Dynamics 1986–87. Lecture Notes in Math, vol 1342. Springer, Berlin, pp 33–93

    Google Scholar 

  27. Boyle M, Marcus BH, Trow P (1987) Resolving maps and the dimension group for shifts of finite type. Mem Amer Math Soc 377. AMS, Providence

    Google Scholar 

  28. Boyle M, Pavlov R, Schraudner M (2008) preprint

    Google Scholar 

  29. Burton R, Steif J (1994) Nonuniqueness of measures of maximal entropy for subshifts of finite type. Ergod Theory Dynam Syst 14(2):213–235

    Article  MathSciNet  MATH  Google Scholar 

  30. Calkin N, Wilf H (1998) The number of independent sets in a grid graph. SIAM J Discret Math 11:54–60

    Article  MathSciNet  MATH  Google Scholar 

  31. Cidecyian R, Evangelos E, Marcus B, Modha M (2001) Maximum transition run codes for generalized partial response channels. IEEE J Sel Area Commun 19:619–634

    Article  Google Scholar 

  32. Coven E, Paul M (1974) Endomorphisms of irreducible shifts of finite type. Math Syst Theory 8:167–175

    Article  MathSciNet  Google Scholar 

  33. Coven E, Paul M (1975) Sofic systems. Isr J Math 20:165–177

    Article  MathSciNet  MATH  Google Scholar 

  34. Coven E, Paul M (1977) Finite procedures for sofic systems. Monats Math 83:265–278

    Article  MathSciNet  MATH  Google Scholar 

  35. Cover T, Thomas J (1991) Elements of information theory. Wiley, New York

    Book  MATH  Google Scholar 

  36. Desai A (2006) Subsystem entropy for Z d sofic shifts. Indag Math 17:353–360

    Article  MathSciNet  MATH  Google Scholar 

  37. Desai A (2008) A class of Z d-subshifts which factor onto lower entropy full shifts. Proc Amer Math Soc, to appear

    Google Scholar 

  38. Devaney R (1987) An introduction to chaotic dynamical systems. Addison‐Wesley, Reading

    Google Scholar 

  39. Fischer R (1975) Sofic systems and graphs. Monats Math 80:179–186

    Article  MATH  Google Scholar 

  40. Fischer R (1975) Graphs and symbolic dynamics. Colloq Math Soc János Bólyai: Top Inf Theory 16:229–243

    Google Scholar 

  41. Franaszek PA (1968) Sequence‐state coding for digital transmission. Bell Syst Tech J 47:143–155

    Google Scholar 

  42. Franaszek PA (1982) Construction of bounded delay codes for discrete noiseless channels. J IBM Res Dev 26:506–514

    Article  MathSciNet  MATH  Google Scholar 

  43. Franaszek PA (1989) Coding for constrained channels: a comparison of two approaches. J IBM Res Dev 33:602–607

    Article  Google Scholar 

  44. Friedman J (1990) On the road coloring problem. Proc Amer Math Soc 110:1133–1135

    Article  MathSciNet  MATH  Google Scholar 

  45. Gomez R (2003) Positive K‑theory for finitary isomoprhisms of Markov chains. Ergod Theory Dynam Syst 23:1485–1504

    Article  MATH  Google Scholar 

  46. Hadamard J (1898) Les surfaces a courbures opposées et leurs lignes geodesiques. J Math Pure Appl 4:27–73

    Google Scholar 

  47. Hassellblatt B, Katok A (1995) Introduction to the modern theory of dynamical systems. Cambridge University Press, Cambridge

    Google Scholar 

  48. Hedlund GA (1939) The dynamics of geodesic flows. Bull Amer Math Soc 45:241–260

    Article  MathSciNet  MATH  Google Scholar 

  49. Hedlund GA (1944) Sturmian minimal sets. Amer J Math 66:605–620

    Article  MathSciNet  MATH  Google Scholar 

  50. Hedlund GA (1969) Endomorphisms and automorphisms of the shift dynamical system. Math Syst Theory 3:320–375

    Article  MathSciNet  MATH  Google Scholar 

  51. Hochman M, Meyerovitch T (2007) A characterization of the entropies of multidimensional shifts of finite type. Ann Math, to appear

    Google Scholar 

  52. Hochman M (2007) On the dynamics and recursive properties of multidimensional symbolic systems. Preprint

    Google Scholar 

  53. Hollmann HDL (1995) On the construction of bounded‐delay encodable codes for constrained systems. Trans IEEE Inf Theory 41:1354–1378

    Article  MathSciNet  MATH  Google Scholar 

  54. Immink KAS (2004) Codes for mass data storage, 2nd edn. Shannon Foundation Press, Eindhoven

    Google Scholar 

  55. Johnson A, Madden K (2005) Factoring higher‐dimensional shifts of finite type onto full shifts. Ergod Theory Dynam Syst 25:811–822

    Article  MathSciNet  MATH  Google Scholar 

  56. Karabed R, Siegel P, Soljanin E (1999) Constrained coding for binary channels with high intersymbol intereference. Trans IEEE Inf Theory 45:1777–1797

    Article  MathSciNet  MATH  Google Scholar 

  57. Kari J (2001) Synchronizing finite automata on Eulerian digraphs. Springer Lect Notes Comput Sci 2136:432–438

    Google Scholar 

  58. Kastelyn PW (1961) The statistics of dimers on a lattice. Physica A 27:1209–1225

    Google Scholar 

  59. Kenyon R (2008) Lectures on dimers. http://www.math.brown.edu/~rkenyon/papers/dimerlecturenotes.pdf

  60. Kim KH, Roush FW (1979) Some results on decidability of shift equivalence. J Comb Inf Syst Sci 4:123–146

    MathSciNet  MATH  Google Scholar 

  61. Kim KH, Roush FW (1988) Decidability of shift equivalence. In: Alexander J (ed) Proceedings of Maryland special year in dynamics 1986–87. Lecture Notes in Math, vol 1342. Springer, Berlin, pp 374–424

    Google Scholar 

  62. Kim KH, Roush FW (1990) An algorithm for sofic shift equivalence. Ergod Theory Dynam Syst 10:381–393

    Article  MathSciNet  MATH  Google Scholar 

  63. Kim KH, Roush FW (1999) Williams conjecture is false for irreducible subshifts. Ann Math 149:545–558

    Article  MathSciNet  MATH  Google Scholar 

  64. Kim KH, Ormes N, Roush F (2000) The spectra of nonnegative integer matrices via formal power series. Amer J Math Soc 13:773–806

    Article  MathSciNet  MATH  Google Scholar 

  65. Kitchens B (1998) Symbolic dynamics: One-sided, two-sided and countable state Markov chains. Springer, Berlin

    Google Scholar 

  66. Kitchens B, Marcus B, Trow P (1991) Eventual factor maps and compositions of closing maps. Ergod Theory Dynam Syst 11:85–113

    Article  MathSciNet  MATH  Google Scholar 

  67. Kitchens B, Schmidt K (1988) Periodic points, decidability and Markov subgroups, dynamical systems. In: Alexander JC (ed) Proceedings of the special year. Springer Lect Notes Math 1342:440–454

    Article  MathSciNet  Google Scholar 

  68. Krieger W (1980) On a dimension for a class of homeomorphism groups. Math Ann 252:87–95

    Article  MathSciNet  MATH  Google Scholar 

  69. Krieger W (1980) On dimension functions and topological Markov chains. Invent Math 56:239–250

    Article  MathSciNet  MATH  Google Scholar 

  70. Krieger W (1982) On the subsystems of topological Markov chains. Ergod Theory Dynam Syst 2:195–202

    Article  MathSciNet  MATH  Google Scholar 

  71. Krieger W (1983) On the finitary isomorphisms of Markov shifts that have finite expected coding time. Wahrscheinlichkeitstheorie Z 65:323–328

    Article  MathSciNet  MATH  Google Scholar 

  72. Krieger W (1984) On sofic systems I. Isr J Math 48:305–330

    Article  MathSciNet  MATH  Google Scholar 

  73. Lightwood S (2003/04) Morphisms form non‐periodic Z 2 subshifts I and II. Ergod Theory Dynam Syst 23:587–609, 24:1227–1260

    Google Scholar 

  74. Lind D (1984) The entropies of topological Markov shifts and a related class of algebraic integers. Ergod Theory Dynam Syst 4:283–300

    Article  MathSciNet  MATH  Google Scholar 

  75. Lind D (1989) Perturbations of shifts of finite type. SIAM J Discret Math 2:350–365

    Article  MathSciNet  MATH  Google Scholar 

  76. Lind D (2004) Multi‐dimensional symbolic dynamics. In: Williams S (ed) Symbolic dynamics and its applications. Proc Symp Appl Math 60:81–120

    Article  MathSciNet  Google Scholar 

  77. Lind D (1996) A zeta function for Z d-actions. In: Pollicott M, Schmidt K (eds) Proceedings of Warwick Symposium on Z d-actions. LMS Lecture Notes, vol 228. Cambridge University Press, Cambridge, pp 433–450

    Google Scholar 

  78. Lind D, Marcus B (1995) An introduction to symbolic dynamics and coding. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  79. Lind D, Schmidt K (2002) Symbolic and algebraic dynamical systems. In: Hasselblatt B, Katok A (eds) Handbook of Dynamics Systems. Elsevier, Amsterdam, pp 765–812

    Chapter  Google Scholar 

  80. Manning A (1971) Axiom A diffeomorphisms have rational zeta functions. Bull Lond Math Soc 3:215–220

    Article  MathSciNet  MATH  Google Scholar 

  81. Marcus B (1979) Factors and extensions of full shifts. Monats Math 88:239–247

    Article  MATH  Google Scholar 

  82. Marcus BH, Roth RM (1991) Bounds on the number of states in encoder graphs for input‐constrained channels. Trans IEEE Inf Theory 37:742–758

    Article  MathSciNet  MATH  Google Scholar 

  83. Marcus BH, Roth RM, Siegel PH (1998) Constrained systems and coding for recording chapter. In: Brualdi R, Huffman C, Pless V (eds) Handbook on coding theory. Elsevier, New York; updated version at http://www.math.ubc.ca/~marcus/Handbook/

  84. Marcus B, Tuncel S (1990) Entropy at a weight‐per‐symbol and embeddings of Markov chains. Invent Math 102:235–266

    Article  MathSciNet  MATH  Google Scholar 

  85. Marcus B, Tuncel S (1991) The weight‐per‐symbol polytope and scaffolds of invariants associated with Markov chains. Ergod Theory Dynam Syst 11:129–180

    Article  MathSciNet  MATH  Google Scholar 

  86. Marcus B, Tuncel S (1993) Matrices of polynomials, positivity, and finite equivalence of Markov chains. J Amer Math Soc 6:131–147

    Article  MathSciNet  MATH  Google Scholar 

  87. Markley N, Paul M (1981) Matrix subshifts for \({\mathbf{Z}^\nu}\) symbolic dynamics. Proc Lond Math Soc 43:251–272

    Article  MathSciNet  MATH  Google Scholar 

  88. Markley N, Paul M (1981) Maximal measures and entropy for \({\mathbf{Z}^\nu}\) subshifts of finite type. In: Devaney R, Nitecki Z (eds) Classical mechanics and dynamical systems. Dekker Notes 70:135–157

    MathSciNet  Google Scholar 

  89. Meester R, Steif J (2001) Higher‐dimensional subshifts of finite type, factor maps and measures of maximal entropy. Pac Math J 200:497–510

    Article  MathSciNet  MATH  Google Scholar 

  90. Mouat R, Tuncel S (2002) Constructing finitary isomorphisms with finite expected coding time. Isr J Math 132:359–372

    Article  MathSciNet  MATH  Google Scholar 

  91. Morse M (1921) Recurrent geodesics on a surface of negative curvature. Trans Amer Math Soc 22:84–100

    Article  MathSciNet  MATH  Google Scholar 

  92. Morse M, Hedlund GA (1938) Symbolic dynamics. Amer J Math 60:815–866

    Article  MathSciNet  Google Scholar 

  93. Morse M, Hedlund GA (1940) Symbolic dynamics II, Sturmian trajectories. Amer J Math 62:1–42

    Article  MathSciNet  Google Scholar 

  94. Mozes S (1989) Tilings, substitutions and the dynamical systems generated by them. J Anal Math 53:139–186

    Article  MathSciNet  MATH  Google Scholar 

  95. Mozes S (1992) A zero entropy, mixing of all orders tiling system. In: Walters P (ed) Symbolic dynamics and its applications. Contemp Math 135:319–326

    Article  MathSciNet  Google Scholar 

  96. Nagy Z, Zeger K (2000) Capacity bounds for the three‐dimensional (0, 1) run length limited channel. Trans IEEE Inf Theory 46:1030–1033

    Article  MATH  Google Scholar 

  97. Nasu M (1986) Topological conjugacy for sofic systems. Ergod Theory Dynam Syst 6:265–280

    Article  MathSciNet  MATH  Google Scholar 

  98. Ornstein D (1970) Bernoulli shifts with the same entropy are isomorphic. Adv Math 4:337–352

    Article  MathSciNet  MATH  Google Scholar 

  99. Parry W (1964) Intrinsic Markov chains. Trans Amer Math Soc 112:55–66

    Article  MathSciNet  MATH  Google Scholar 

  100. Parry W (1977) A finitary classification of topological Markov chains and sofic systems. Bull Lond Math Soc 9:86–92

    Article  MathSciNet  MATH  Google Scholar 

  101. Parry W (1979) Finitary isomorphisms with finite expected code‐lengths. Bull Lond Math Soc 11:170–176

    Article  MathSciNet  MATH  Google Scholar 

  102. Parry W (1991) Notes on coding problems for finite state processes. Bull Lond Math Soc 23:1–33

    Article  MathSciNet  MATH  Google Scholar 

  103. Parry W, Schmidt K (1984) Natural coefficients and invariants for Markov shifts. Invent Math 76:15–32

    Article  MathSciNet  MATH  Google Scholar 

  104. Parry W, Tuncel S (1981) On the classification of Markov chains by finite equivalence. Ergod Theory Dynam Syst 1:303–335

    MathSciNet  MATH  Google Scholar 

  105. Parry W, Tuncel S (1982) Classification problems in ergodic theory. In: LMS Lecture Notes, vol 67. Cambridge University Press, Cambridge

    Google Scholar 

  106. Pavlov R (2007) Perturbations of multi‐dimensional shifts of finite type. Preprint

    Google Scholar 

  107. Petersen K (1989) Ergodic theory. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  108. Quas A, Sahin A (2003) Entropy gaps and locally maximal entropy in Z d-subshifts. Ergod Theory Dynam Syst 23:1227–1245

    Article  MathSciNet  MATH  Google Scholar 

  109. Quas A, Trow P (2000) Subshifts of multidimensional shifts of finite type. Ergod Theory Dynam Syst 20:859–874

    Article  MathSciNet  MATH  Google Scholar 

  110. Radin C (1996) Miles of tiles. In: Pollicott M, Schmidt K (eds) Ergodic Theory of Z d-actions. LMS Lecture Notes, vol 228. Cambridge University Press, Cambridge, pp 237–258

    Google Scholar 

  111. Robinson RM (1971) Undecidability and nonperiodicity for tilings of the plane. Invent Math 12:177–209

    Article  MathSciNet  Google Scholar 

  112. Robinson EA (2004) Symbolic dynamics and tilings of \({\mathbf{R}^d}\). In: Williams S (ed) Symbolic dynamics and its applications. Proc Symp Appl Math 60:81–120

    Article  Google Scholar 

  113. Rudolph D (1990) Fundamentals of measurable dynamics. Oxford University Press, Oxford

    MATH  Google Scholar 

  114. Schmidt K (1984) Invariants for finitary isomorphisms with finite expected code lengths. Invent Math 76:33–40

    Article  MathSciNet  MATH  Google Scholar 

  115. Schmidt K (1990) Algebraic ideas in ergodic theory. AMS-CBMS Reg Conf 76

    Google Scholar 

  116. Schmidt K (1995) Dynamical systems of algebraic origin. Birkhauser, Basel

    Book  MATH  Google Scholar 

  117. Schwartz M, Bruck S (2008) Constrained codeds as networks of relations. IEEE Trans Inf Theory 54:2179–2195

    Article  MathSciNet  Google Scholar 

  118. Seneta E (1980) Non‐negative matrices and Markov chains, 2nd edn. Springer, Berlin

    Google Scholar 

  119. Shannon C (1948) A mathematical theory of communication. Bell Syst Tech J 27:379–423,623–656

    MathSciNet  Google Scholar 

  120. Sinai YG (1968) Markov partitions and C‑diffeomorphisms. Funct Anal Appl 2:64–89

    Article  MathSciNet  Google Scholar 

  121. Smale S (1967) Differentiable dynamical systems. Bull Amer Math Soc 73:747–817

    Article  MathSciNet  MATH  Google Scholar 

  122. Trachtman A (2007) The road coloring problem. Israel J Math, to appear

    Google Scholar 

  123. Tuncel S (1981) Conditional pressure and coding. Isr J Math 39:101–112

    Article  MathSciNet  MATH  Google Scholar 

  124. Tuncel S (1983) A dimension, dimension modules and Markov chains. Proc Lond Math Soc 46:100–116

    Article  MathSciNet  MATH  Google Scholar 

  125. Wagoner J (1992) Classification of subshifts of finite type revisited. In: Walters P (ed) Symbolic dynamics and its applications. Contemp Math 135:423–444

    Article  MathSciNet  Google Scholar 

  126. Wagoner J (2004) Strong shift equivalence theory. In: Walters P (ed) Symbolic dynamics and its applications. Proc Symp Appl Math 60:121–154

    Article  MathSciNet  Google Scholar 

  127. Walters P (1982) An introduction to ergodic theory. Springer Grad Text Math 79. Springer, Berlin

    Book  Google Scholar 

  128. Walters P (1992) Symbolic dynamics and its applications. In: Walter P (ed) Contemp Math 135. AMS, Providence

    Google Scholar 

  129. Ward T (1994) Automorphisms of Z d-subshifts of finite type. Indag Math 5:495–504

    Article  MathSciNet  Google Scholar 

  130. Weiss B (1973) Subshifts of finite type and sofic systems. Monats Math 77:462–474

    Article  MATH  Google Scholar 

  131. Williams RF (1973/74) Classification of subshifts of finite type. Ann Math 98:120–153; Erratum: Ann Math 99:380–381

    Google Scholar 

  132. Williams S (2004) Introduction to symbolic dynamics. In: Williams S (ed) Symbolic dynamics and its applications. Proc Symp Appl Math 60:1–12

    Article  Google Scholar 

  133. Williams S (2004) Symbolic dynamics and its applications. In: Williams S (ed) Proc Symp Appl Math 60. AMS, Providence

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag

About this entry

Cite this entry

Marcus, B. (2012). Symbolic Dynamics. In: Meyers, R. (eds) Mathematics of Complexity and Dynamical Systems. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-1806-1_108

Download citation

Publish with us

Policies and ethics