Skip to main content

Finite Dimensional Controllability

  • Reference work entry
Mathematics of Complexity and Dynamical Systems
  • 389 Accesses

Article Outline

Glossary

Definition of the Subject

Introduction

Control Systems

Linear Systems

Linearization Principle

High Order Tests

Controllability and Observability

Controllability and Stabilizability

Flatness

Future Directions

Bibliography

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 600.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Control system :

control system is a dynamical system incorporating a  control input designed to achieve a control objective. It is finite dimensional if the phase space (e. g. a vector space or a manifold) is of finite dimension. A  continuous‐time control system takes the form \({{\text{d}} x/{\text{d}} t=f(x,u)}\), \({x\in X}\), \({u\in U}\) and \({t\in {\mathbb{R}}}\) denoting respectively the state, the input, and the continuous time. A  discrete‐time system assumes the form \({x_{k+1}=f(x_k,u_k)}\), where \({k\in {\mathbb{Z}}}\) is the discrete time.

Open/closed loop:

A control system is said to be in open loop form when the input u is any function of time, and in closed loop form when the input u is a function of the state only, i. e., it takes the more restrictive form \({u=h(x(t))}\), where \({h{\colon}X\to U}\) is a given function called a  feedback law .

Controllability :

A control system is controllable if any pair of states may be connected by a trajectory of the system corresponding to an appropriate choice of the control input.

Stabilizability :

A control system is asymptotically stabilizable around an equilibrium point if there exists a feedback law such that the corresponding closed loop system is asymptotically stable at the equilibrium point.

Output function:

An output function is any function of the state.

Observability:

A control system given together with an output function is said to be observable if two different states give rise to two different outputs for a convenient choice of the input function.

Flatness :

An output function is said to be flat if the state and the input can be expressed as functions of the output and of a finite number of its derivatives.

Bibliography

Primary Literature

  1. Agrachev AA, Gamkrelidze RV (1993) Local controllability and semigroups of diffeomorphisms. Acta Appl Math 32:1–57

    Article  MathSciNet  MATH  Google Scholar 

  2. Agrachev A, Liberzon D (2001) Lie-algebraic stability criteria for switched systems. SIAM J Control Optim 40(1):253–269

    Article  MathSciNet  MATH  Google Scholar 

  3. Agrachev A, Sarychev A (2005) Navier–Stokes equations: controllability by means of low modes forcing. J Math Fluid Mech 7(1):108–152

    Article  MathSciNet  MATH  Google Scholar 

  4. Bianchini RM, Stefani G (1986) Sufficient conditions of local controllability. In: Proc. 25th IEEE–Conf. Decision \({\&}\) Control. Athens

    Google Scholar 

  5. Bonnard B (1992) Contrôle de l'altitude d'un satellite rigide. RAIRO Autom Syst Anal Control 16:85–93

    Google Scholar 

  6. Brockett RW (1983) Asymptotic stability and feedback stabilization. In: Brockett RW, Millman RS, Sussmann HJ (eds) Differential Geometric Control Theory. Progr. Math., vol 27. Birkhäuser, Basel, pp 181–191

    Google Scholar 

  7. Cerpa E, Crépeau E (2007) Boundary controllability for the nonlinear Korteweg–de Vries equation on any critical domain

    Google Scholar 

  8. Chow WL (1940) Über Systeme von linearen partiellen Differentialgleichungen erster Ordnung. Math Ann 117:98–105

    Article  Google Scholar 

  9. Coron JM (1992) Global asymptotic stabilization for controllable systems without drift. Math Control Signals Syst 5:295–312

    Article  MathSciNet  MATH  Google Scholar 

  10. Coron JM (1995) Stabilization in finite time of locally controllable systems by means of continuous time-varying feedback laws. SIAM J Control Optim 33:804–833

    Article  MathSciNet  MATH  Google Scholar 

  11. Coron JM (2007) Control and nonlinearity, mathematical surveys and monographs. American Mathematical Society, Providence

    Google Scholar 

  12. Coron JM, Crépeau E (2004) Exact boundary controllability of a nonlinear KdV equation with critical lengths. J Eur Math Soc 6(3):367–398

    Google Scholar 

  13. Curtain RF, Pritchard AJ (1978) Infinite Dimensional Linear Systems Theory. Springer, New York

    Book  MATH  Google Scholar 

  14. Dolecky S, Russell DL (1977) A general theory of observation and control. SIAM J Control Optim 15:185–220

    Article  Google Scholar 

  15. Fliess M, Lévine J, Martin PH, Rouchon P (1995) Flatness and defect of nonlinear systems: introductory theory and examples. Intern J Control 31:1327–1361

    Google Scholar 

  16. Hautus MLJ (1969) Controllability and observability conditions for linear autonomous systems. Ned Akad Wetenschappen Proc Ser A 72:443–448

    MathSciNet  MATH  Google Scholar 

  17. Hermes H (1982) Control systems which generate decomposable Lie algebras. J Differ Equ 44:166–187

    Article  MathSciNet  MATH  Google Scholar 

  18. Hermes H, Kawski M (1986) Local controllability of a single-input, affine system. In: Proc. 7th Int. Conf. Nonlinear Analysis. Dallas

    Google Scholar 

  19. Hirschorn R, Lewis AD (2004) High-order variations for families of vector fields. SIAM J Control Optim 43:301–324

    Article  MathSciNet  MATH  Google Scholar 

  20. Kalman RE (1960) Contribution to the theory of optimal control. Bol Soc Mat Mex 5:102–119

    MathSciNet  Google Scholar 

  21. Kawski M (1989) Stabilization of nonlinear systems in the plane. Syst Control Lett 12:169–175

    Article  MathSciNet  MATH  Google Scholar 

  22. Kawski M (1990) High-order small time local controllability. In: Sussmann HJ (ed) Nonlinear controllability and optimal control. Textbooks Pure Appl. Math., vol 113. Dekker, New York, pp 431–467

    Google Scholar 

  23. Khodja FA, Benabdallah A, Dupaix C, Kostin I (2005) Null-controllability of some systems of parabolic type by one control force. ESAIM Control Optim Calc Var 11(3):426–448

    Article  MathSciNet  MATH  Google Scholar 

  24. Lions JL (1988) Contrôlabilité exacte, perturbations et stabilisation de systèmes distribués. In: Recherches en Mathématiques Appliquées, Tome 1, vol 8. Masson, Paris

    Google Scholar 

  25. Liu K (1997) Locally distributed control and damping for the conservative systems. SIAM J Control Optim 35:1574–1590

    Article  MathSciNet  MATH  Google Scholar 

  26. Lobry C (1970) Contrôlabilité des systèmes non linéaires. SIAM J Control 8:573–605

    Article  MathSciNet  MATH  Google Scholar 

  27. Martin PH, Murray RM, Rouchon P (2002) Flat systems. Mathematical Control Theory, Part 1,2 (Trieste 2001). In: ICTP Lect. Notes, vol VIII. Abdus Salam Int Cent Theoret Phys, Trieste

    Google Scholar 

  28. Rashevski PK (1938) About connecting two points of complete nonholonomic space by admissible curve. Uch Zapiski ped inst Libknexta 2:83–94

    Google Scholar 

  29. Rosier L (1997) Exact boundary controllability for the Korteweg–de Vries equation on a bounded domain. ESAIM: Control Optim Calc Var 2:33–55

    Article  MathSciNet  MATH  Google Scholar 

  30. Rosier L (2007) A Survey of controllability and stabilization results for partial differential equations. J Eur Syst Autom (JESA) 41(3–4):365–412

    Google Scholar 

  31. Samson C (1991) Velocity and torque feedback control of a nonholonomic cart. In: de Witt C (ed) Proceedings of the International workshop on nonlinear and adaptative control: Issues in robotics, Grenoble, France nov. 1990. Lecture Notes in Control and Information Sciences, vol 162. Springer, Berlin, pp 125–151

    Google Scholar 

  32. Silverman LM, Meadows HE (1967) Controllability and observability in time-variable linear systems. SIAM J Control 5:64–73

    Article  MathSciNet  MATH  Google Scholar 

  33. Sontag ED, Sussmannn H (1980) Remarks on continuous feedbacks. In: Proc. IEEE Conf. Decision and Control, (Albuquerque 1980). pp 916–921

    Google Scholar 

  34. Stefani G (1985) Local controllability of nonlinear systems: An example. Syst Control Lett 6:123–125

    Article  MathSciNet  MATH  Google Scholar 

  35. Sussmann H (1987) A general theorem on local controllability. SIAM J Control Optim 25:158–194

    Article  MathSciNet  MATH  Google Scholar 

  36. Sussmann H, Jurdjevic V (1972) Controllability of nonlinear systems. J Differ Equ 12:95–116

    Article  MathSciNet  MATH  Google Scholar 

  37. Tret'yak AI (1991) On odd-order necessary conditions for optimality in a time-optimal control problem for systems linear in the control. Math USSR Sbornik 79:47–63

    Article  MathSciNet  Google Scholar 

  38. Zuazua E (2005) Propagation, observation and control of waves approximated by finite difference methods. SIAM Rev 47(2):197–243

    Article  MathSciNet  MATH  Google Scholar 

Books and Reviews

  1. Agrachev AA, Sachkov YL (2004) Control theory from the geometric viewpoint. In: Encyclopaedia of Mathematical Sciences, vol 87. Springer, Berlin

    Google Scholar 

  2. Bacciotti A (1992) Local stabilization of nonlinear control systems. In: Ser. Adv. Math. Appl. Sci, vol 8. World Scientific, River Edge

    Google Scholar 

  3. Bacciotti A, Rosier L (2005) Liapunov functions and stability in control theory. Springer, Berlin

    MATH  Google Scholar 

  4. Isidori A (1989) Nonlinear control systems. Springer, Berlin

    MATH  Google Scholar 

  5. Nijmeijer H, van der Schaft AJ (1990) Nonlinear dynamical control systems. Springer, New York

    Book  MATH  Google Scholar 

  6. Sastry S (1999) Nonlinear systems. Springer, New York

    MATH  Google Scholar 

  7. Sontag E (1990) Mathematical control theory. Springer, New York

    Book  MATH  Google Scholar 

  8. Zabczyk J (1992) Mathematical control theory: An introduction. Birkhäuser, Boston

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag

About this entry

Cite this entry

Rosier, L. (2012). Finite Dimensional Controllability. In: Meyers, R. (eds) Mathematics of Complexity and Dynamical Systems. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-1806-1_26

Download citation

Publish with us

Policies and ethics