Skip to main content

Crust (Type)

  • Reference work entry
  • First Online:
Encyclopedia of Planetary Landforms
  • 19 Accesses

Definition

Solidified upper layer of a planetary body that is chemically distinct from the mantle, formed by various degrees of differentiation. On Earth, the crust comprises all material above the Mohorovičić discontinuity (Whittow 2000). The definition of the terrestrial lithosphere (mobile lithospheric plates) includes the crust and the uppermost mantle, both of which are layers of strength relative to the underlying weaker asthenospheric mantle for deformation at geologic rates (Dennis and Atwater 1974, p. 1031; Bürgman and Dresen 2008). On other planetary bodies, the crust is poorly defined because of the lack of seismic data.

Subtypes

  1. (1)

    Primary/primordial crust results from planetary differentiation. It forms during and following planetary accretion (Chambers 2004) on short (100 Myr) timescales (Taylor 1989; Taylor and McLennan 2009, p. 22 and references therein). When the surface had stabilized subsequent to primary accretion, it became cool and thus strong and rigid enough...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,299.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abe Y (1993) Physical state of the very early Earth. Lithos 30:223–235

    Article  Google Scholar 

  • Albarede F, Blichert-Toft J (2007) The split fate of the early Earth, Mars, Venus and Moon. C R Geosci 339:917–927

    Article  Google Scholar 

  • Bédard JH, Brouillette P, Madore L, Berclaz A (2003) Archaean cratonization and deformation in the northern superior province, Canada: an evaluation of plate tectonic versus vertical tectonic models. Precambrian Res 127:61–87

    Article  Google Scholar 

  • Benz W, Slattery WL, Cameron AGW (1988) Collisional stripping of mercury’s mantle. Icarus 74(3):516–528

    Article  Google Scholar 

  • Bradley JL, Gillis JJ, Haskin LA, Korotev RL, Wieczorek MA (2000) Major lunar crustal terranes: surface expressions and crust-mantle origins. J Geophys Res 105(E2):4197–4216

    Article  Google Scholar 

  • Breuer D, Moore WB (2007) Dynamics and thermal history of the terrestrial planets, the moon, and Io. In: Spohn T (ed) Planets and moons. Treatise on geophysics, vol 10. Elsevier, Breuer pp 299–348

    Google Scholar 

  • Bürgman R, Dresen G (2008) Rheology of the lower crust and upper mantle: evidence from rock mechanics, geodesy, and field observations. Annu Rev Earth Planet Sci 36:531–567

    Article  Google Scholar 

  • Campbell IH, Taylor SR (1983) No water, no granites – no oceans, no continents. Geophys Res Lett 10:1061–1064

    Article  Google Scholar 

  • Caro G, Bourdon B, Birck J, Moorbath S (2003) Sm–Nd evidence from Isua metamorphosed sediments for early differentiation of the earth’s mantle. Nature 423:428–432

    Article  Google Scholar 

  • Castro A, Voght K, Gerya T (2012) Generation of new continental crust by sublithospheric silicic-magma relamination in arcs: a test of Taylor’s andesite model. Gondwana Res. http://dx.doi.org/10.1016/j.gr.2012.07.004

  • Chambers JE (2004) Planetary accretion in the inner Solar System. Earth Planet Sci Lett 223:241–252

    Article  Google Scholar 

  • Dennis JG, Atwater TM (1974) Terminology of geodynamics. American Association of Petroleum Geologists. Bulletin 58:1030–1036

    Google Scholar 

  • Elkins-Tanton LT (2011) Formation of early water oceans on rocky planets. Astrophys Space Sci 332(2):359–364

    Article  Google Scholar 

  • Elkins-Tanton LT (2012) Magma oceans in the inner solar system. Ann Rev Earth Planet Sci 40:113–139

    Article  Google Scholar 

  • Galer SJG, Mezger K (1998) Metamorphism denudation and sea level in the archean and cooling of the earth. Precambrian Res 92:387–412

    Article  Google Scholar 

  • Goldschmidt VM (1954) Geochemistry. Oxford. Clarendon Press, Oxford, p 730

    Google Scholar 

  • Grimm RE, Hess PC (1997) The crust of venus. In: Bougher SW, Hunten DM, Phillips RJ (eds) Venus II. University of Arizona Press, Tucson, p 1330

    Google Scholar 

  • Harrison TM (2009) The Hadean crust: evidence from ancient zircons. Ann Rev Earth Planet Sci 37:479–505

    Article  Google Scholar 

  • Hartmann WK, Davis DR (1975) Satellite-sized planetesimals and lunar origin. Icarus 24:504–514

    Article  Google Scholar 

  • Head JW, Ivanov MA, Basilevsky AT (2009) Geological evidence for petrogenetic diversity on venus: implications for future exploration strategies. Workshop on venus geochemistry: progress, prospects, and new missions. LPI Contrib 1470:25–26

    Google Scholar 

  • Hopkins MD, Harrison TM, Manning CE (2010) Constraints on Hadean geodynamics from mineral inclusions in >4 Ga zircons. Earth and Planetary Science Letters 298:367–376

    Article  Google Scholar 

  • Illés E (2005) Comparative planetology. In: Dudich E (ed) Geonomy. The synthesizing geoscience for the 21st century. Hungarian Academy of Sciences, Uniconstant, Püspökladány

    Google Scholar 

  • Jolliff BL, Gillis JJ, Haskin LA, Korotev RL, Wieczorek MA (2000) Major lunar crustal terranes: surface expressions and crust-mantle origins. J Geophys Res 105(E2):4197–4216

    Article  Google Scholar 

  • Jull M, Kelemen PB (2001) On the conditions for lower crustal convective instability. J Geophys Res 106(B4):6423–6446

    Article  Google Scholar 

  • Kargel JS (1994) Cryovolcanism on the icy satellites. Earth Moon Planets 67(1–3):101–113

    Article  Google Scholar 

  • Kemp AIS, Wilde SA, Hawkesworth CJ, Coath CD, Nemchin A, Pidgeon RT, Vervoort JD, DuFrane SA (2010) Hadean crustal evolution revisited: new constraints from Pb–Hf isotope systematics of the Jack Hills zircons. Earth Planet Sci Lett 296:45–56

    Article  Google Scholar 

  • Lunine JI (2006) Origin of water ice in the solar system. In: Lauretta DS, McSween HY (eds) Meteorites and the early solar system II. University of Arizona Press, Tucson, pp 309–331

    Google Scholar 

  • Marcus RA, Stewart ST, Sasselov D, Hernquist L (2009) Collisional stripping and disruption of super-Earths. Astrophysical J 700:L118. doi:10.1088/0004-637X/700/2/L118

    Article  Google Scholar 

  • Massironi M, Cremonese G, Marchi S, Martellato E, Mottola S, Wagner RJ (2009) Mercury’s Geochronology revised by applying model production function to mariner 10 data: geological implications. Geophys Res Lett 36:L21204. doi:10.1029/2009GL040353

    Article  Google Scholar 

  • Mojzsis SJ, Harrison TM, Pidgeon RT (2001) Oxygen-isotope evidence from ancient zircons for liquid water at the earth’s surface 4,300 Myr ago. Nature 409:178–181

    Article  Google Scholar 

  • Nagel TJ, Hoffmann JE, Münker C (2012) Generation of Eoarchean tonalite-trondhjemite-granodiorite series from thickened mafic arc crust. Geology 40:375. doi:10.1130/G32729.1

    Article  Google Scholar 

  • Pappalardo RT, Head JW (1999) Europa: Role of The Ductile Layer. LPSC XXX #1967

    Google Scholar 

  • Poulet F (2009) Petrogenesis of the martian crust. EPSC Abstracts, 4, EPSC2009-166, European Planetary Science Congress

    Google Scholar 

  • Roth ASG, Bourdon B, Mojzsis SJ, Touboul M, Sprung P, Guitreau M, Blichert-Toft J (2013) Inherited 142-Nd anomalies in Eoarchean protoliths. Earth Planet Sci Lett 361:50–57

    Article  Google Scholar 

  • Rothery D, Marinangeli L, Anand M, Carpenter J, Christensen U et al (2010) Mercury’s surface and composition to be studied by BepiColombo. Planet Space Sci 58(1–2):21–39

    Article  Google Scholar 

  • Sleep NH (2005) Evolution of the continental lithosphere. Annu Rev Earth Planet Sci 33:369–393. doi:10.1146/annurev.earth.33.092203.122643

    Article  Google Scholar 

  • Tappe S, Smart KA, Pearson DG, Steenfelt A, Simonetti A (2011) Craton formation in Late Archean subduction zones revealed by first Greenland eclogites. Geology 39(12):1103–1106. doi:10.1130/G32348.1 v

    Article  Google Scholar 

  • Taylor SR (1982) Lunar and terrestrial crusts: a contrast in origin and evolution. Phys Earth Planet Inter 29:233–241

    Article  Google Scholar 

  • Taylor SR (1989) Growth of planetary crusts. Tectonophysics 161:147–156

    Article  Google Scholar 

  • Taylor SR, McLennan SM (1985) The continental crust: its composition and evolution. Blackwell Scientific, Carlton, p 312

    Google Scholar 

  • Taylor SR, McLennan SM (2009) Planetary crusts: their composition, origin and evolution. Cambridge University Press, Cambridge

    Google Scholar 

  • Tonks BT, Melosh HJ (1993) Magma ocean formation due to giant impacts. J Geophys Res 98:5319–5333

    Article  Google Scholar 

  • Warren PH (1985) The magma ocean concept and lunar evolution. Ann Rev Earth Planet Sci 13:201–240

    Article  Google Scholar 

  • Whittow JB (2000) The penguin dictionary of physical geography, 2nd edn. Penguin Books, Auckland

    Google Scholar 

  • Wieczorek MA, Zuber MT (2004) Thickness of the martian crust: improved constraints from geoid-to-topography ratios. J Geophys Res 109:E01009. doi:10.1029/2003JE002153

    Google Scholar 

  • Wilhelms DE (1993) To a rocky moon – a geologists history of lunar exploration. The University of Arizona Press, Tucson, p 477

    Google Scholar 

  • Wood JA (1972) Fragments of terra rock in the Apollo 12 soil samples and a structural model of the moon. Icarus 16:494

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henrik Hargitai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this entry

Cite this entry

Hargitai, H. (2015). Crust (Type). In: Hargitai, H., Kereszturi, Á. (eds) Encyclopedia of Planetary Landforms. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3134-3_90

Download citation

Publish with us

Policies and ethics