Skip to main content

Bioethanol from Starch

  • Reference work entry
  • First Online:
Renewable Energy Systems
  • 4958 Accesses

Definition of the Subject and Its Importance

Ethanol is a very interesting chemical compound which can be used in different applications such as drinking alcohol in beverages as well as in chemicals, pharmaceuticals, and biofuels. Production of alcoholic beverages based on biomass containing sugar can be assumed as old as human civilization. The production of ethanol from starch using a fermentation process started most probably in beer-producing countries approximately in the twelfth century. The production of “pure” ethanol is also a very long known process. The development of more efficient distillation processes in the nineteenth century led to large increase in industrial trade of ethanol. The largest amount of the industrial ethanol was still used for alcoholic beverages. But also other applications like the use in the chemical industry, as lamp fuel and as a fuel have been exploited. The use of ethanol as a fuel...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 849.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Alcohol:

Often used trivial name for ethanol, in chemistry it describes the class of alcohols including also methanol, butanol, etc.

Bioethanol:

Product of a fermentative process used mainly as a fuel from renewable substrates in comparison to the use of fossil fuels.

Ethanol:

Chemical name of an alcohol with the molecular formula CH3–CH2–OH and is the same chemical substance as bioethanol and has other synonyms like bioethanol, ethyl alcohol, pure alcohol, or drinking alcohol.

DDGS:

Animal feed called “distillers’ dried grain with solubles.”

Fermentation:

Process step which produces ethanol and CO2 as product.

Liquefaction:

Enzymatic process step using amylases to cut the starch chains into oligosaccharides.

Saccharification:

Enzymatic process step using beta-amylases and glucoamylases to cut oligosaccharides into fermentable sugars.

Starch:

Starch is a very important part of the human food in sources like wheat, maize, rice, potatoes, and many other plants and is also a source of sugars for the fermentation.

Thin stillage:

Liquid stream received from the decanter containing dissolved nutrients and salts.

Yeast:

Saccharomyces cerevisiae is the organism used in the ethanol production industry.

Wet cake:

Solid-rich stream received from the decanter containing nutrients like proteins.

Bibliography

Primary Literature

  1. Brown WH, Poon T (2005) Introduction to organic chemistry, 3rd edn. Wiley, New York

    Google Scholar 

  2. Roehr M (2001) The biotechnology of ethanol. Wiley, Weinheim

    Google Scholar 

  3. Monceaux DA (2009) Alternative feedstocks for fuel ethanol production. In: Ingeledew WM (ed) The alcohol textbook, 5th edn. Nottingham University Press, Nottingham, pp 47–71

    Google Scholar 

  4. Bothast RJ, Schilcher MA (2005) Biotechnological processes for conversion of corn into ethanol. Appl Microbiol Biotechnol 76:19–25

    Article  Google Scholar 

  5. Gallagher PW, Brubacker H, Shapouri H (2005) Plant size: capital cost relationships in the dry mill ethanol industry. Biomass Bioenergy 28:565–571

    Article  Google Scholar 

  6. Kwiatkowski JR, McAloona AJ, Taylora F, Johnston DB (2006) Modeling the process and costs of fuel ethanol production by the corn dry-grind process. Ind Crops Prod 23:288–296

    Article  Google Scholar 

  7. Senn T, Friedl A (2009) Ethanolerzeugung und –nutzung. In Kaltschmitt M (ed) Energie aus Biomasse, 2. Auflage, Springer, Berlin, pp 793–850

    Google Scholar 

  8. Bellissimi E, Richards C (2009) Yeast propagation. In: Ingeledew WM (ed) The alcohol textbook, 5th edn. Nottingham University Press, Nottingham, pp 145–159

    Google Scholar 

  9. Doerfler J, Amorim HV (2007) Applied bioethanol technology in Brazil. Zuckerindustrie 132:694–697

    Google Scholar 

  10. Gmehling J, Onken U, Arlt W, Grenzheuser P, Weidlich U, Kolbe B, Rarey J (1981) Dechema chemistry data series, vol 1, Part 1a. DECHEMA, Frankfurt/M

    Google Scholar 

  11. Madson PW (2009) Ethanol distillation: the fundamentals. In: Ingeledew WM (ed) The alcohol textbook, 5th edn. Nottingham University Press, Nottingham, pp 289–302

    Google Scholar 

  12. International Fuel Quality Center (2004) Setting a quality standard for fuel ethanol. Report to Department of the Environment and Heritage

    Google Scholar 

  13. Meirelles A, Weiss S, Herfurth H (1992) Ethanol dehydration by extractive distillation. J Chem Technol Biotechnol 53:181–188

    Article  Google Scholar 

  14. Widagdo S, Seider WD (2004) Journal review. Azeotropic distillation. AIChE J 42:96–130

    Article  Google Scholar 

  15. Udeye V, Mopoung S, Vorasingha A, Amornsakchai P (2009) Ethanol heterogeneous azeotropic distillation design and construction. Int J Phys Sci 4:101–106

    Google Scholar 

  16. Ruthven DM (1984) Principles of adsorption and adsorption processes. Wiley, New York

    Google Scholar 

  17. Ruthven DM, Farooq S, Knaebel KS (1994) Pressure swing adsorption. Wiley, New York

    Google Scholar 

  18. Kujawski W, Zielinsky L (2006) Bioethanol – one of the renewable energy sources. Environ Prot Eng 32:143–149

    Google Scholar 

  19. O’Brien DJ, Roth LH, McAloon J (2000) Ethanol production by continuous fermentation–pervaporation: a preliminary economic analysis. J Mem Sci 166:105–111

    Article  Google Scholar 

  20. Morigami Y, Kondoa M, Abea J, Kitab H, Okamoto K (2001) The first large-scale pervaporation plant using tubular-type module with zeolite NaA membrane. Sep Purif Technol 25:251–260

    Article  Google Scholar 

  21. Aden A, Ruth M, Ibsen K, Jechura J, Neeves K, Sheehan J, Wallace B, Montague L, Slayton A, Lukas J (2002) Technical Report NREL/TP-510-32438, NREL, Colorado

    Google Scholar 

  22. Stout BA (1990) Handbook of energy for world agriculture. Elsevier, London

    Book  Google Scholar 

  23. Monceaux DA, Kuehner D (2009) Dryhouse technology and DDGS production. In: Ingeledew WM (ed) The alcohol textbook, 5th edn. Nottingham University Press, Nottingham, pp 303–322

    Google Scholar 

  24. Ortin WGN, Yu P (2009) Nutrient variation and availability of wheat DDGS, corn DDGS and blend DDGS from bioethanol plants. J Sci Food Agric 89:1754–1761

    Article  Google Scholar 

  25. Widyaratne GP, Zijlstra RT (2007) Nutritional value of wheat and corn distiller’s dried grain with solubles: digestibility and digestible contents of energy, amino acids and phosphorus, nutrient excretion and growth performance of grower-finisher pigs. Can J Anim Sci 79:103–114

    Article  Google Scholar 

  26. Gorski M (2006) Alternatives to natural gas: more cost-efficient ways to generate steam. Ethanol Producer Magazine. http://www.ethanolproducer.com/articles/1834/. Accessed 27 July 2010

  27. Wilkie AC, Riedesel KJ, Owens JM (2000) Stillage characterization and anaerobis treatment of ethanol stillage from conventional and cellulosic feedstocks. Biomass Bioenerg 19:63–102

    Article  Google Scholar 

  28. Liebmann B, Pfeffer M, Wukovits W, Bauer A, Amon T, Gwehenberger G, Narodoslawsky M, Friedl A (2007) Modelling of small-scale bioethanol plants with renewable energy supply. Chem Eng Trans 12:309–314

    Google Scholar 

  29. Pfeffer M, Wukovits W, Beckmann G, Friedl A (2007) Analysis and decrease of the energy demand of bioethanol-production by process integration. Appl Therm Eng 27:2657–2664

    Article  Google Scholar 

  30. Directive 2003/30/EC of the European Parliament and of the Council (2003) On the promotion of the use of biofuels or other renewable fuels for transport

    Google Scholar 

  31. Oesterreichische Biokraftstoff-Verordnung: 417 (2004) Aenderung der Kraftstoffverordnung 1999

    Google Scholar 

  32. http://en.wikipedia.org/wiki/Ethanol_fuel. Accessed 27 July 2010

    Google Scholar 

  33. Agrarmaerkte (2009) Jahresheft, 6. Jahrgang, Schriftenreihe der Bayrischen Landesanstalt für Landwirtschaft

    Google Scholar 

  34. Goldemberg J, Coelho ST, Nastari PM, Lucond O (2004) Ethanol learning curve – the Brazilian experience. Biomass Bioenergy 26:301–304

    Article  Google Scholar 

  35. Hettinga WG, Junginger HM, Dekker SC, Hoogwijk M, McAloon AJ, Hicks KB (2009) Understanding the reductions in US corn ethanol production costs: an experience curve approach. Energy Policy 37:190–203

    Article  Google Scholar 

  36. Directive 2009/28/EC of the European parliament and of the council (2009) On the promotion of the use of energy from renewable sources and amending and subsequently repealing Directives 2001/77/EC and 2003/30/EC

    Google Scholar 

  37. Lin Y, Tanaka S (2006) Ethanol fermentation from biomass: current state and prospects. Appl Microbiol Biotechnol 69:627–642

    Article  Google Scholar 

  38. Górak A, Hoffmann A, Kreis P (2007) Prozessintensivierung: reaktive und membranunterstützte Rektifikation. Chem Ing Tech 79:1581–1600

    Article  Google Scholar 

  39. Vane L (2005) A review of pervaporation for product recovery from biomass fermentation processes. J Chem Technol Biotechnol 80:603–629

    Article  Google Scholar 

  40. Zacchi G, Axelsson A (1989) Economic evaluation of preconcentration in production of ethanol from dilute sugar solutions. Biotechnol Bioeng 34:223–233

    Article  Google Scholar 

  41. Galbe M, Sassner P, Wingren A, Zacchi G (2007) Process engineering economics of bioethanol production. Adv Biochem Eng Biotechnol 108:303–327

    Google Scholar 

Books and Reviews

  • Chaplin M, Bucke C (1990) Enzyme technology. Cambridge University Pres, Cambridge

    Google Scholar 

  • Gwehenberger G, Narodoslawsky M, Liebmann N, Friedl A (2007) Ecology of scale versus economy of scale for bioethanol production. Biofuels Bioprod Bioref 1:264–269

    Article  Google Scholar 

  • Huang RYM (1991) Pervaporation membrane separation process. Elsevier, Amsterdam

    Google Scholar 

  • Müller D, Marquardt W (1997) Experimental verification of multiple steady states in heterogeneous azeotropic distillation. Ind Eng Chem Res 36(12):5410–5418

    Article  Google Scholar 

  • Pereira CLF, Ortega E (2010) Sustainability assessment of large-scale ethanol production from sugarcane. J Clean Prod 18:77–82

    Article  Google Scholar 

  • Pereira NS, Peinemann KV (2006) Membrane technology in the chemical industry. Wiley, Weinheim

    Google Scholar 

  • Schmitz N (2006) Bioethanol als Kraftstoff – Stand und Perspektiven. Technikfolgenabschätzung – Theorie und Praxis 1:16–26

    Google Scholar 

  • Schulz M, Hebecker D (2005) Thermodynamische Analyse und Bewertung der Bioethanolherstellung, Chem Ing Tech 78:502–505

    Google Scholar 

  • Wukovits W, Pfeffer M, Beckmann B, Friedl A (2007) Deckung des Energiebedarfs von Bioethanolanlagen durch erneuerbare Energieträger. Chem Ing Techn 79:617–620

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anton Friedl .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this entry

Cite this entry

Friedl, A. (2013). Bioethanol from Starch . In: Kaltschmitt, M., Themelis, N.J., Bronicki, L.Y., Söder, L., Vega, L.A. (eds) Renewable Energy Systems. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5820-3_432

Download citation

Publish with us

Policies and ethics