Skip to main content

6-Hydroxydopamine Lesioning of Dopamine Neurons in Neonatal and Adult Rats Induces Age-Dependent Consequences

  • Reference work entry
  • First Online:
Handbook of Neurotoxicity

Abstract

Over 45 years ago, it was discovered that the compound 6-hydroxydopamine (6-OHDA) destroys catecholamine (CA)-containing neurons when injected directly into the brain. Refinements in the use of 6-OHDA led to the development of dopamine (DA)-denervated rats to model Parkinson’s disease (PD) and Lesch-Nyhan syndrome (LNS), in which loss of DA-containing neurons is a prominent feature. Differing functional characteristics were eventually discovered in DA-denervated rats depending on the age at which the DA was reduced. With 6-OHDA lesioning of CA neural systems in the brain, key discoveries were made regarding how these systems control specific physiological functions and behavioral responses. Important neurobiological concepts emerged as well, including receptor supersensitivity, D1/D2-DA receptor interaction, and D1-DA priming of supersensitivity, including neural mechanisms likely relevant to clinical symptoms modeled by the 6-OHDA treatment. In this chapter, behavioral, neurochemical, structural, and pharmacological studies carried out in adult and neonatal 6-OHDA-treated rats are reviewed, and findings are compared and contrasted. To date, age-dependent lesioning of DA neurons in rats with 6-OHDA continues to play an important role in the development and validation of new therapies for clinical disorders with brain DA reduced.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 549.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abercrombie, E. D., Bonatz, A. E., & Zigmond, M. J. (1990). Effects of L-dopa on extracellular dopamine in striatum of normal and 6-hydroxydopamine-treated rats. Brain Research, 525(1), 36–44.

    CAS  PubMed  Google Scholar 

  • Abrous, D. N., Choulli, K., Rouge-Pont, F., Simon, H., Le Moal, M., & Herman, J. P. (1993a). Effects of intracerebral dopaminergic grafts on behavioural deficits induced by neonatal 6-hydroxydopamine lesions of the mesotelencephalic dopaminergic pathway. Neuroscience, 54(2), 499–511.

    CAS  PubMed  Google Scholar 

  • Abrous, D. N., Manier, M., Mennicken, F., Feuerstein, C., Le Moal, M., & Herman, J. P. (1993b). Intrastriatal transplants of embryonic dopaminergic neurons counteract the increase of striatal enkephalin immunostaining but not serotoninergic sprouting elicited by a neonatal lesion of the nigrostriatal dopaminergic pathway. The European Journal of Neuroscience, 5(2), 128–136.

    CAS  PubMed  Google Scholar 

  • Agid, Y., Javoy, F., & Glowinski, J. (1973). Hyperactivity of remaining dopaminergic neurons after partial destruction of the nigro-striatal dopaminergic system in the rat. Nature: New Biology, 245(144), 150–151.

    CAS  Google Scholar 

  • Aizman, O., Brismar, H., Uhlen, P., Zettergren, E., Levey, A. I., Forssberg, H., Greengard, P., & Aperia, A. (2000). Anatomical and physiological evidence for D1 and D2 dopamine receptor colocalization in neostriatal neurons. Nature Neuroscience, 3(3), 226–230.

    CAS  PubMed  Google Scholar 

  • Albin, R. L., Young, A. B., & Penney, J. B. (1989). The functional anatomy of basal ganglia disorders. Trends in Neurosciences, 12(10), 366–375.

    CAS  PubMed  Google Scholar 

  • Altar, C. A., & Marien, M. R. (1987). Picomolar affinity of 125I-SCH 23982 for D1 receptors in brain demonstrated with digital subtraction autoradiography. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 7(1), 213–222.

    CAS  Google Scholar 

  • Altar, C. A., Marien, M. R., & Marshall, J. F. (1987). Time course of adaptations in dopamine biosynthesis, metabolism, and release following nigrostriatal lesions: Implications for behavioral recovery from brain injury. Journal of Neurochemistry, 48(2), 390–399.

    CAS  PubMed  Google Scholar 

  • Andersson, M., Hilbertson, A., & Cenci, M. A. (1999). Striatal fosB expression is causally linked with l-DOPA-induced abnormal involuntary movements and the associated upregulation of striatal prodynorphin mRNA in a rat model of Parkinson’s disease. Neurobiology of Disease, 6(6), 461–474.

    CAS  PubMed  Google Scholar 

  • Angulo, J. A., Coirini, H., Ledoux, M., & Schumacher, M. (1991). Regulation by dopaminergic neurotransmission of dopamine D2 mRNA and receptor levels in the striatum and nucleus accumbens of the rat. Brain Research. Molecular Brain Research, 11(2), 161–166.

    CAS  PubMed  Google Scholar 

  • Archer, T., Danysz, W., Fredriksson, A., Jonsson, G., Luthman, J., Sundstrom, E., & Teiling, A. (1988). Neonatal 6-hydroxydopamine-induced dopamine depletions: Motor activity and performance in maze learning. Pharmacology, Biochemistry, and Behavior, 31(2), 357–364.

    CAS  PubMed  Google Scholar 

  • Baez, L. A., Ahlskog, J. E., & Randall, P. K. (1977). Body weight and regulatory deficits following unilateral nigrostriatal lesions. Brain Research, 132(3), 467–476.

    CAS  PubMed  Google Scholar 

  • Bal, A., Savasta, M., Chritin, M., Mennicken, F., Abrous, D. N., Le Moal, M., Feuerstein, C., & Herman, J. P. (1993). Transplantation of fetal nigral cells reverses the increase of preproenkephalin mRNA levels in the rat striatum caused by 6-OHDA lesion of the dopaminergic nigrostriatal pathway: A quantitative in situ hybridization study. Brain Research. Molecular Brain Research, 18(3), 221–227.

    CAS  PubMed  Google Scholar 

  • Bannon, M. J., Lee, J. M., Giraud, P., Young, A., Affolter, H. U., & Bonner, T. I. (1986). Dopamine antagonist haloperidol decreases substance P, substance K, and preprotachykinin mRNAs in rat striatonigral neurons. The Journal of Biological Chemistry, 261(15), 6640–6642.

    CAS  PubMed  Google Scholar 

  • Bannon, M. J., Elliott, P. J., & Bunney, E. B. (1987). Striatal tachykinin biosynthesis: Regulation of mRNA and peptide levels by dopamine agonists and antagonists. Brain Research, 427(1), 31–37.

    CAS  PubMed  Google Scholar 

  • Barone, P., Morelli, M., Popoli, M., Cicarelli, G., Campanella, G., & Di Chiara, G. (1994). Behavioural sensitization in 6-hydroxydopamine lesioned rats involves the dopamine signal transduction: Changes in DARPP-32 phosphorylation. Neuroscience, 61(4), 867–873.

    CAS  PubMed  Google Scholar 

  • Basura, G. J., & Walker, P. D. (1999). Serotonin 2A receptor mRNA levels in the neonatal dopamine-depleted rat striatum remain upregulated following suppression of serotonin hyperinnervation. Brain Research. Developmental Brain Research, 116(1), 111–117.

    CAS  PubMed  Google Scholar 

  • Basura, G. J., & Walker, P. D. (2000). Stimulated serotonin release from hyperinnervated terminals subsequent to neonatal dopamine depletion regulates striatal tachykinin, but not enkephalin gene expression. Brain Research. Molecular Brain Research, 81(1–2), 80–91.

    CAS  PubMed  Google Scholar 

  • Basura, G. J., & Walker, P. D. (2001). Serotonin 2A receptor regulation of striatal neuropeptide gene expression is selective for tachykinin, but not enkephalin neurons following dopamine depletion. Brain Research. Molecular Brain Research, 92(1–2), 66–77.

    CAS  PubMed  Google Scholar 

  • Batchelor, P. E., Liberatore, G. T., Wong, J. Y., Porritt, M. J., Frerichs, F., Donnan, G. A., & Howells, D. W. (1999). Activated macrophages and microglia induce dopaminergic sprouting in the injured striatum and express brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 19(5), 1708–1716.

    CAS  Google Scholar 

  • Baumeister, A. A., & Frye, G. D. (1985). The biochemical basis of the behavioral disorder in the Lesch-Nyhan syndrome. Neuroscience and Biobehavioral Reviews, 9(2), 169–178.

    CAS  PubMed  Google Scholar 

  • Baumeister, A. A., & Frye, G. D. (1986). Involvement of the midbrain reticular formation in self-injurious behavior, stereotyped behavior, and analgesia induced by intranigral microinjection of muscimol. Brain Research, 369(1–2), 231–242.

    CAS  PubMed  Google Scholar 

  • Beckstead, R. M., & Cruz, C. J. (1986). Striatal axons to the globus pallidus, entopeduncular nucleus and substantia nigra come mainly from separate cell populations in cat. Neuroscience, 19(1), 147–158.

    CAS  PubMed  Google Scholar 

  • Berger, T. W., Kaul, S., Stricker, E. M., & Zigmond, M. J. (1985). Hyperinnervation of the striatum by dorsal raphe afferents after dopamine-depleting brain lesions in neonatal rats. Brain Research, 336(2), 354–358.

    CAS  PubMed  Google Scholar 

  • Berger, K., Przedborski, S., & Cadet, J. L. (1991). Retrograde degeneration of nigrostriatal neurons induced by intrastriatal 6-hydroxydopamine injection in rats. Brain Research Bulletin, 26(2), 301–307.

    CAS  PubMed  Google Scholar 

  • Berl, S. (1973). Metabolic compartimentation in developing brain. In W. Himwich (Ed.), Biochemistry of the developing brain (Vol. 1, pp. 219–252). New York: Marcel Dekker.

    Google Scholar 

  • Bernardi, M. M., Scavone, C., & Frussa-Filho, R. (1986). Differential effects of single and long-term amphetamine and apomorphine administrations on locomotor activity of rats. General Pharmacology, 17(4), 465–468.

    CAS  PubMed  Google Scholar 

  • Bernheimer, H., Birkmayer, W., Hornykiewicz, O., Jellinger, K., & Seitelberger, F. (1973). Brain dopamine and the syndromes of Parkinson and Huntington. Clinical, morphological and neurochemical correlations. Journal of the Neurological Sciences, 20(4), 415–455.

    CAS  PubMed  Google Scholar 

  • Bezard, E., Dovero, S., Prunier, C., Ravenscroft, P., Chalon, S., Guilloteau, D., Crossman, A. R., Bioulac, B., Brotchie, J. M., & Gross, C. E. (2001). Relationship between the appearance of symptoms and the level of nigrostriatal degeneration in a progressive 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-lesioned macaque model of Parkinson’s disease. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 21(17), 6853–6861.

    CAS  Google Scholar 

  • Billard, W., Ruperto, V., Crosby, G., Iorio, L. C., & Barnett, A. (1984). Characterization of the binding of 3H-SCH 23390, a selective D-1 receptor antagonist ligand, in rat striatum. Life Sciences, 35(18), 1885–1893.

    CAS  PubMed  Google Scholar 

  • Bischoff, S., Heinrich, M., Krauss, J., Sills, M. A., Williams, M., & Vassout, A. (1988). Interaction of the D1 receptor antagonist SCH 23390 with the central 5-HT system: Radioligand binding studies, measurements of biochemical parameters and effects on L-5-HTP syndrome. Journal of Receptor Research, 8(1–4), 107–120.

    CAS  PubMed  Google Scholar 

  • Bishop, C., & Walker, P. D. (2003). Combined intrastriatal dopamine D1 and serotonin 5-HT2 receptor stimulation reveals a mechanism for hyperlocomotion in 6-hydroxydopamine-lesioned rats. Neuroscience, 121(3), 649–657.

    CAS  PubMed  Google Scholar 

  • Bishop, C., Kamdar, D. P., & Walker, P. D. (2003). Intrastriatal serotonin 5-HT2 receptors mediate dopamine D1-induced hyperlocomotion in 6-hydroxydopamine-lesioned rats. Synapse, 50(2), 164–170.

    CAS  PubMed  Google Scholar 

  • Bishop, C., Tessmer, J. L., Ullrich, T., Rice, K. C., & Walker, P. D. (2004). Serotonin 5-HT2A receptors underlie increased motor behaviors induced in dopamine-depleted rats by intrastriatal 5-HT2A/2C agonism. The Journal of Pharmacology and Experimental Therapeutics, 310(2), 687–694

    CAS  PubMed  Google Scholar 

  • Bishop, C., Daut, G. S., & Walker, P. D. (2005). Serotonin 5-HT2A but not 5-HT2C receptor antagonism reduces hyperlocomotor activity induced in dopamine-depleted rats by striatal administration of the D1 agonist SKF 82958. Neuropharmacology, 49(3), 350–358.

    CAS  PubMed  Google Scholar 

  • Blanchard, V., Anglade, P., Dziewczapolski, G., Savasta, M., Agid, Y., & Raisman-Vozari, R. (1996). Dopaminergic sprouting in the rat striatum after partial lesion of the substantia nigra. Brain Research, 709(2), 319–325.

    CAS  PubMed  Google Scholar 

  • Blandini, F., Levandis, G., Bazzini, E., Nappi, G., & Armentero, M. T. (2007). Time-course of nigrostriatal damage, basal ganglia metabolic changes and behavioural alterations following intrastriatal injection of 6-hydroxydopamine in the rat: New clues from an old model. The European Journal of Neuroscience, 25(2), 397–405.

    PubMed  Google Scholar 

  • Blandini, F., Armentero, M. T., & Martignoni, E. (2008). The 6-hydroxydopamine model: News from the past. Parkinsonism & Related Disorders, 14(Suppl 2), S124–S129.

    Google Scholar 

  • Bloom, F. E., Algeri, S., Groppetti, A., Revuelta, A., & Costa, E. (1969). Lesions of central norepinephrine terminals with 6-OH-dopamine: Biochemistry and fine structure. Science, 166(3910), 1284–1286.

    CAS  PubMed  Google Scholar 

  • Bohn, M. C., Cupit, L., Marciano, F., & Gash, D. M. (1987). Adrenal medulla grafts enhance recovery of striatal dopaminergic fibers. Science, 237(4817), 913–916.

    CAS  PubMed  Google Scholar 

  • Bolam, J. P., & Smith, Y. (1990). The GABA and substance P input to dopaminergic neurons in the substantia nigra of the rat. Brain Research, 529(1–2), 57–78.

    CAS  PubMed  Google Scholar 

  • Bove, J., Prou, D., Perier, C., & Przedborski, S. (2005). Toxin-induced models of Parkinson’s disease. NeuroRx : The Journal of the American Society for Experimental NeuroTherapeutics, 2(3), 484–494.

    Google Scholar 

  • Breese, G. R. (1975). Chemical and immunochemical lesions by specific neurotoxic substances and antisera. In L. L. Iversen & S. H. Snyder (Eds.), Handbook of psychopharmacology (Vol. 1, pp. 137–189). New York: Plenum.

    Google Scholar 

  • Breese, G. R., & Cooper, B. R. (1975). Behavioral and biochemical interactions of 5,7-dihydroxytryptamine with various drugs when administered intracisternally to adult and developing rats. Brain Research, 98(3), 517–527.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Breese, G. R., & Mueller, R. A. (1985). SCH-23390 antagonism of a D-2 dopamine agonist depends upon catecholaminergic neurons. European Journal of Pharmacology, 113(1), 109–114.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Breese, G. R., & Traylor, T. D. (1970). Effect of 6-hydroxydopamine on brain norepinephrine and dopamine evidence for selective degeneration of catecholamine neurons. The Journal of Pharmacology and Experimental Therapeutics, 174(3), 413–420.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Breese, G. R., & Traylor, T. D. (1971). Depletion of brain noradrenaline and dopamine by 6-hydroxydopamine. British Journal of Pharmacology, 42(1), 88–99.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Breese, G. R., & Traylor, T. D. (1972). Developmental characteristics of brain catecholamines and tyrosine hydroxylase in the rat: Effects of 6-hydroxydopamine. British Journal of Pharmacology, 44(2), 210–222.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Breese, G. R., Smith, R. D., Cooper, B. R., & Grant, L. D. (1973). Alterations in consummatory behavior following intracisternal injection of 6-hydroxydopamine. Pharmacology, Biochemistry, and Behavior, 1(3), 319–328.

    CAS  PubMed  Google Scholar 

  • Breese, G. R., Cooper, B. R., & Smith, R. D. (1974). Biochemical and behavioural alterations following 6-hydroxydopamine administration into brain. Biochemical Pharmacology, 23(Suppl 1), 574–579.

    PubMed Central  PubMed  Google Scholar 

  • Breese, G. R., Vogel, R. A., & Mueller, R. A. (1978). Biochemical and behavioral alterations in developing rats treated with 5,7-dihydroxytryptamine. The Journal of Pharmacology and Experimental Therapeutics, 205(3), 587–595.

    CAS  PubMed  Google Scholar 

  • Breese, G. R., Baumeister, A. A., McCown, T. J., Emerick, S. G., Frye, G. D., Crotty, K., & Mueller, R. A. (1984a). Behavioral differences between neonatal and adult 6-hydroxydopamine-treated rats to dopamine agonists: Relevance to neurological symptoms in clinical syndromes with reduced brain dopamine. The Journal of Pharmacology and Experimental Therapeutics, 231(2), 343–354.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Breese, G. R., Baumeister, A. A., McCown, T. J., Emerick, S. G., Frye, G. D., & Mueller, R. A. (1984b). Neonatal-6-hydroxydopamine treatment: Model of susceptibility for self-mutilation in the Lesch-Nyhan syndrome. Pharmacology, Biochemistry, and Behavior, 21(3), 459–461.

    CAS  PubMed  Google Scholar 

  • Breese, G. R., Baumeister, A., Napier, T. C., Frye, G. D., & Mueller, R. A. (1985a). Evidence that D-1 dopamine receptors contribute to the supersensitive behavioral responses induced by L-dihydroxyphenylalanine in rats treated neonatally with 6-hydroxydopamine. The Journal of Pharmacology and Experimental Therapeutics, 235(2), 287–295.

    CAS  PubMed  Google Scholar 

  • Breese, G. R., Napier, T. C., & Mueller, R. A. (1985b). Dopamine agonist-induced locomotor activity in rats treated with 6-hydroxydopamine at differing ages: Functional supersensitivity of D-1 dopamine receptors in neonatally lesioned rats. The Journal of Pharmacology and Experimental Therapeutics, 234(2), 447–455.

    CAS  PubMed  Google Scholar 

  • Breese, G. R., Mueller, R. A., Napier, T. C., & Duncan, G. E. (1986). Neurobiology of D1 dopamine receptors after neonatal-6-OHDA treatment: Relevance to Lesch-Nyhan disease. Advances in Experimental Medicine and Biology, 204, 197–215.

    CAS  PubMed  Google Scholar 

  • Breese, G. R., Duncan, G. E., Napier, T. C., Bondy, S. C., Iorio, L. C., & Mueller, R. A. (1987a). 6-hydroxydopamine treatments enhance behavioral responses to intracerebral microinjection of D1- and D2-dopamine agonists into nucleus accumbens and striatum without changing dopamine antagonist binding. The Journal of Pharmacology and Experimental Therapeutics, 240(1), 167–176.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Breese, G. R., Hulebak, K. L., Napier, T. C., Baumeister, A., Frye, G., & Mueller, R. A. (1987b). Enhanced muscimol-induced behavioral responses after 6-OHDA lesions: Relevance to susceptibility for self-mutilation behavior in neonatally lesioned rats. Psychopharmacology, 91(3), 356–362.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Breese, G. R., Criswell, H. E., Duncan, G. E., & Mueller, R. A. (1989). Dopamine deficiency in self-injurious behavior. Psychopharmacology Bulletin, 25(3), 353–357.

    CAS  PubMed  Google Scholar 

  • Breese, G. R., Criswell, H. E., Johnson, K. B., O’Callaghan, J. P., Duncan, G. E., Jensen, K. F., Simson, P. E., & Mueller, R. A. (1994). Neonatal destruction of dopaminergic neurons. Neurotoxicology, 15(1), 149–159.

    CAS  PubMed  Google Scholar 

  • Breese, G. R., Knapp, D. J., Criswell, H. E., Moy, S. S., Papadeas, S. T., & Blake, B. L. (2005). The neonate-6-hydroxydopamine-lesioned rat: A model for clinical neuroscience and neurobiological principles. Brain Research. Brain Research Reviews, 48(1), 57–73.

    CAS  PubMed  Google Scholar 

  • Brene, S., Lindefors, N., Herrera-Marschitz, M., & Persson, H. (1990). Expression of dopamine D2 receptor and choline acetyltransferase mRNA in the dopamine deafferented rat caudate-putamen. Experimental Brain Research Experimentelle Hirnforschung Experimentation Cerebrale, 83(1), 96–104.

    CAS  Google Scholar 

  • Broaddus, W. C., & Bennett, J. P., Jr. (1990). Postnatal development of striatal dopamine function. II. Effects of neonatal 6-hydroxydopamine treatments on D1 and D2 receptors, adenylate cyclase activity and presynaptic dopamine function. Brain Research. Developmental Brain Research, 52(1–2), 273–277.

    CAS  PubMed  Google Scholar 

  • Bruinvels, A. T., Landwehrmeyer, B., Gustafson, E. L., Durkin, M. M., Mengod, G., Branchek, T. A., Hoyer, D., & Palacios, J. M. (1994). Localization of 5-HT1B, 5-HT1D alpha, 5-HT1E and 5-HT1F receptor messenger RNA in rodent and primate brain. Neuropharmacology, 33(3–4), 367–386.

    CAS  PubMed  Google Scholar 

  • Bruno, J. P., Snyder, A. M., & Stricker, E. M. (1984). Effect of dopamine-depleting brain lesions on suckling and weaning in rats. Behavioral Neuroscience, 98(1), 156–161.

    CAS  PubMed  Google Scholar 

  • Bruno, J. P., Zigmond, M. J., & Stricker, E. M. (1986). Rats given dopamine-depleting brain lesions as neonates do not respond to acute homeostatic imbalances as adults. Behavioral Neuroscience, 100(1), 125–128.

    CAS  PubMed  Google Scholar 

  • Bruno, J. P., Jackson, D., Zigmond, M. J., & Stricker, E. M. (1987). Effect of dopamine-depleting brain lesions in rat pups: Role of striatal serotonergic neurons in behavior. Behavioral Neuroscience, 101(6), 806–811.

    CAS  PubMed  Google Scholar 

  • Brus, R., Nowak, P., Szkilnik, R., Mikolajun, U., & Kostrzewa, R. M. (2004). Serotoninergics attenuate hyperlocomotor activity in rats. Potential new therapeutic strategy for hyperactivity. Neurotoxicity Research, 6(4), 317–325.

    PubMed  Google Scholar 

  • Buonamici, M., Caccia, C., Carpentieri, M., Pegrassi, L., Rossi, A. C., & Di Chiara, G. (1986). D-1 receptor supersensitivity in the rat striatum after unilateral 6-hydroxydopamine lesions. European Journal of Pharmacology, 126(3), 347–348.

    CAS  PubMed  Google Scholar 

  • Burgunder, J. M. (1991). Prenatal ontogeny of growth hormone releasing hormone expression in rat hypothalamus. Developmental Neuroscience, 13(6), 397–402.

    CAS  PubMed  Google Scholar 

  • Bymaster, F. P., Hemrick-Luecke, S. K., Perry, K. W., & Fuller, R. W. (1996). Neurochemical evidence for antagonism by olanzapine of dopamine, serotonin, alpha 1-adrenergic and muscarinic receptors in vivo in rats. Psychopharmacology, 124(1–2), 87–94.

    CAS  PubMed  Google Scholar 

  • Cadet, J. L., Zhu, S. M., & Angulo, J. A. (1992). Quantitative in situ hybridization evidence for differential regulation of proenkephalin and dopamine D2 receptor mRNA levels in the rat striatum: Effects of unilateral intrastriatal injections of 6-hydroxydopamine. Brain Research. Molecular Brain Research, 12(1–3), 59–67.

    CAS  PubMed  Google Scholar 

  • Campbell, K., & Bjorklund, A. (1994). Prefrontal corticostriatal afferents maintain increased enkephalin gene expression in the dopamine-denervated rat striatum. The European Journal of Neuroscience, 6(8), 1371–1383.

    CAS  PubMed  Google Scholar 

  • Campbell, K., Wictorin, K., & Bjorklund, A. (1992). Differential regulation of neuropeptide mRNA expression in intrastriatal striatal transplants by host dopaminergic afferents. Proceedings of the National Academy of Sciences of the United States of America, 89(21), 10489–10493.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Campbell, B. M., Gresch, P. J., & Walker, P. D. (2001). Neonatal dopamine depletion reveals a synergistic mechanism of mRNA regulation that is mediated by dopamine (D1) and serotonin(2) receptors and is targeted to tachykinin neurons of the dorsomedial striatum. Neuroscience, 105(3), 671–680.

    CAS  PubMed  Google Scholar 

  • Carder, R. K., Snyder-Keller, A. M., & Lund, R. D. (1987). Amphetamine- and stress-induced turning after nigral transplants in neonatally dopamine-depleted rats. Brain Research, 430(2), 315–318.

    CAS  PubMed  Google Scholar 

  • Carder, R. K., Jackson, D., Morris, H. J., Lund, R. D., & Zigmond, M. J. (1989). Dopamine released from mesencephalic transplants restores modulation of striatal acetylcholine release after neonatal 6-hydroxydopamine: An in vitro analysis. Experimental Neurology, 105(3), 251–259.

    CAS  PubMed  Google Scholar 

  • Carlsson, M., & Carlsson, A. (1989). The NMDA antagonist MK-801 causes marked locomotor stimulation in monoamine-depleted mice. Journal of Neural Transmission, 75(3), 221–226.

    CAS  PubMed  Google Scholar 

  • Carman, L. S., Gage, F. H., & Shults, C. W. (1991). Partial lesion of the substantia nigra: Relation between extent of lesion and rotational behavior. Brain Research, 553(2), 275–283.

    CAS  PubMed  Google Scholar 

  • Carta, M., Carlsson, T., Kirik, D., & Bjorklund, A. (2007). Dopamine released from 5-HT terminals is the cause of L-DOPA-induced dyskinesia in parkinsonian rats. Brain: A Journal of Neurology, 130(Pt 7), 1819–1833.

    Google Scholar 

  • Castaneda, E., Whishaw, I. Q., Lermer, L., & Robinson, T. E. (1990a). Dopamine depletion in neonatal rats: Effects on behavior and striatal dopamine release assessed by intracerebral microdialysis during adulthood. Brain Research, 508(1), 30–39.

    CAS  PubMed  Google Scholar 

  • Castaneda, E., Whishaw, I. Q., & Robinson, T. E. (1990b). Changes in striatal dopamine neurotransmission assessed with microdialysis following recovery from a bilateral 6-OHDA lesion: Variation as a function of lesion size. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 10(6), 1847–1854.

    CAS  Google Scholar 

  • Cenci, M. A., & Bjorklund, A. (1993). Transection of corticostriatal afferents reduces amphetamine- and apomorphine-induced striatal Fos expression and turning behaviour in unilaterally 6-hydroxydopamine-lesioned rats. The European Journal of Neuroscience, 5(8), 1062–1070.

    CAS  PubMed  Google Scholar 

  • Cenci, M. A., & Konradi, C. (2010). Maladaptive striatal plasticity in L-DOPA-induced dyskinesia. Progress in Brain Research, 183, 209–233.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cenci, M. A., Campbell, K., & Bjorklund, A. (1993). Neuropeptide messenger RNA expression in the 6-hydroxydopamine-lesioned rat striatum reinnervated by fetal dopaminergic transplants: Differential effects of the grafts on preproenkephalin, preprotachykinin and prodynorphin messenger RNA levels. Neuroscience, 57(2), 275–296.

    CAS  PubMed  Google Scholar 

  • Cenci, M. A., Lee, C. S., & Bjorklund, A. (1998). L-DOPA-induced dyskinesia in the rat is associated with striatal overexpression of prodynorphin- and glutamic acid decarboxylase mRNA. The European Journal of Neuroscience, 10(8), 2694–2706.

    CAS  PubMed  Google Scholar 

  • Chao, J., & Nestler, E. J. (2004). Molecular neurobiology of drug addiction. Annual Review of Medicine, 55, 113–132.

    CAS  PubMed  Google Scholar 

  • Chen, J. F., & Weiss, B. (1991). Ontogenetic expression of D2 dopamine receptor mRNA in rat corpus striatum. Brain Research. Developmental Brain Research, 63(1–2), 95–104.

    CAS  PubMed  Google Scholar 

  • Chinen, C. C., Faria, R. R., & Frussa-Filho, R. (2006). Characterization of the rapid-onset type of behavioral sensitization to amphetamine in mice: Role of drug-environment conditioning. Neuropsychopharmacology: Official Publication of the American College of Neuropsychopharmacology, 31(1), 151–159.

    CAS  Google Scholar 

  • Christie, R., Bay, C., Kaufman, I. A., Bakay, B., Borden, M., & Nyhan, W. L. (1982). Lesch-Nyhan disease: Clinical experience with nineteen patients. Developmental Medicine and Child Neurology, 24(3), 293–306.

    CAS  PubMed  Google Scholar 

  • Chritin, M., Savasta, M., Mennicken, F., Bal, A., Abrous, D. N., Le Moal, M., Feuerstein, C., & Herman, J. P. (1992). Intrastriatal dopamine-rich implants reverse the increase of dopamine D2 receptor mRNA Levels caused by lesion of the nigrostriatal pathway: A quantitative in situ hybridization study. The European Journal of Neuroscience, 4(7), 663–672.

    PubMed  Google Scholar 

  • Chritin, M., Feuerstein, C., & Savasta, M. (1993). Time-course of changes in striatal levels of DA uptake sites, DA D2 receptor and preproenkephalin mRNAs after nigrostriatal dopaminergic denervation in the rat. Brain Research. Molecular Brain Research, 19(4), 318–322.

    CAS  PubMed  Google Scholar 

  • Cimino, M., Zoli, M., & Weiss, B. (1991). Differential ontogenetic expression and regulation of proenkephalin and preprosomatostatin mRNAs in rat caudate-putamen as studied by in situ hybridization histochemistry. Brain Research. Developmental Brain Research, 60(2), 115–122.

    CAS  PubMed  Google Scholar 

  • Cole, D. G., Growdon, J. H., & DiFiglia, M. (1993). Levodopa induction of Fos immunoreactivity in rat brain following partial and complete lesions of the substantia nigra. Experimental Neurology, 120(2), 223–232.

    CAS  PubMed  Google Scholar 

  • Compan, V., Daszuta, A., Salin, P., Sebben, M., Bockaert, J., & Dumuis, A. (1996). Lesion study of the distribution of serotonin 5-HT4 receptors in rat basal ganglia and hippocampus. The European Journal of Neuroscience, 8(12), 2591–2598.

    CAS  PubMed  Google Scholar 

  • Cooper, B. R., & Breese, G. R. (1975). A role for dopamine in the psychopharmacology of electrical self-stimulation of the lateral hypothalamus, substantia nigra, and locus coeruleus. Psychopharmacology Bulletin, 11(3), 30–31.

    CAS  PubMed  Google Scholar 

  • Cooper, B. R., Breese, G. R., Howard, J. L., & Grant, L. D. (1972). Enhanced behavioral depressant effects of reserpine and -methyltyrosine after 6-hydroxydopamine treatment. Psychopharmacologia, 27(2), 99–110.

    CAS  PubMed  Google Scholar 

  • Cooper, B. R., Breese, G. R., Grant, L. D., & Howard, J. L. (1973a). Effects of 6-hydroxydopamine treatments on active avoidance responding: Evidence for involvement of brain dopamine. The Journal of Pharmacology and Experimental Therapeutics, 185(2), 358–370.

    CAS  PubMed  Google Scholar 

  • Cooper, B. R., Grant, L. D., & Breese, G. R. (1973b). Comparison of the behavioral depressant effects of biogenic amine depleting and neuroleptic agents following various 6-hydroxydopamine treatments. Psychopharmacologia, 31(2), 95–109.

    CAS  PubMed  Google Scholar 

  • Costall, B., & Naylor, R. J. (1974). Extrapyramidal and mesolimbic involvement with the stereotypic activity of D- and L-amphetamine. European Journal of Pharmacology, 25(2), 121–129.

    CAS  PubMed  Google Scholar 

  • Costall, B., & Naylor, R. J. (1981). The hypotheses of different dopamine receptor mechanisms. Life Sciences, 28(3), 215–229.

    CAS  PubMed  Google Scholar 

  • Costall, B., Naylor, R. J., & Neumeyer, J. L. (1975). Differences in the nature of the stereotyped behaviour induced by aporphine derivatives in the rat and in their actions in extrapyramidal and mesolimbic brain areas. European Journal of Pharmacology, 31(1), 1–16.

    CAS  PubMed  Google Scholar 

  • Costall, B., Naylor, R. J., Cannon, J. G., & Lee, T. (1977). Differentiation of the dopamine mechanisms mediating stereotyped behaviour and hyperactivity in the nucleus accumbens and caudate-putamen. The Journal of Pharmacy and Pharmacology, 29(6), 337–342.

    CAS  PubMed  Google Scholar 

  • Creese, I., & Iversen, S. D. (1974). The role of forebrain dopamine systems in amphetamine induced stereotyped behavior in the rat. Psychopharmacologia, 39(4), 345–357.

    CAS  PubMed  Google Scholar 

  • Creese, I., Burt, D. R., & Snyder, S. H. (1977). Dopamine receptor binding enhancement accompanies lesion-induced behavioral supersensitivity. Science, 197(4303), 596–598.

    CAS  PubMed  Google Scholar 

  • Criswell, H., Mueller, R. A., & Breese, G. R. (1989). Priming of D1-dopamine receptor responses: Long-lasting behavioral supersensitivity to a D1-dopamine agonist following repeated administration to neonatal 6-OHDA-lesioned rats. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 9(1), 125–133.

    CAS  Google Scholar 

  • Criswell, H. E., Mueller, R. A., & Breese, G. R. (1990). Long-term D1-dopamine receptor sensitization in neonatal 6-OHDA-lesioned rats is blocked by an NMDA antagonist. Brain Research, 512(2), 284–290.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Criswell, H. E., Johnson, K. B., Mueller, R. A., & Breese, G. R. (1993). Evidence for involvement of brain dopamine and other mechanisms in the behavioral action of the N-methyl-D-aspartic acid antagonist MK-801 in control and 6-hydroxydopamine-lesioned rats. The Journal of Pharmacology and Experimental Therapeutics, 265(2), 1001–1010.

    CAS  PubMed  Google Scholar 

  • Damsma, G., de Boer, P., Westerink, B. H., & Fibiger, H. C. (1990). Dopaminergic regulation of striatal cholinergic interneurons: An in vivo microdialysis study. Naunyn-Schmiedeberg’s Archives of Pharmacology, 342(5), 523–527.

    CAS  PubMed  Google Scholar 

  • Damsma, G., Robertson, G. S., Tham, C. S., & Fibiger, H. C. (1991). Dopaminergic regulation of striatal acetylcholine release: Importance of D1 and N-methyl-D-aspartate receptors. The Journal of Pharmacology and Experimental Therapeutics, 259(3), 1064–1072.

    CAS  PubMed  Google Scholar 

  • Davids, E., Zhang, K., Tarazi, F. I., & Baldessarini, R. J. (2002). Stereoselective effects of methylphenidate on motor hyperactivity in juvenile rats induced by neonatal 6-hydroxydopamine lesioning. Psychopharmacology, 160(1), 92–98.

    CAS  PubMed  Google Scholar 

  • Davids, E., Zhang, K., Tarazi, F. I., & Baldessarini, R. J. (2003). Animal models of attention-deficit hyperactivity disorder. Brain Research. Brain Research Reviews, 42(1), 1–21.

    PubMed  Google Scholar 

  • Davis, R. J. (2000). Signal transduction by the JNK group of MAP kinases. Cell, 103(2), 239–252.

    CAS  PubMed  Google Scholar 

  • de Boer, P., Damsma, G., Fibiger, H. C., Timmerman, W., de Vries, J. B., & Westerink, B. H. (1990). Dopaminergic-cholinergic interactions in the striatum: The critical significance of calcium concentrations in brain microdialysis. Naunyn-Schmiedeberg's Archives of Pharmacology, 342(5), 528–534.

    PubMed  Google Scholar 

  • De Boer, P., Damsma, G., Schram, Q., Stoof, J. C., Zaagsma, J., & Westerink, B. H. (1992). The effect of intrastriatal application of directly and indirectly acting dopamine agonists and antagonists on the in vivo release of acetylcholine measured by brain microdialysis. The importance of the post-surgery interval. Naunyn-Schmiedeberg's Archives of Pharmacology, 345(2), 144–152.

    PubMed  Google Scholar 

  • Delfs, J. M., Ciaramitaro, V. M., Parry, T. J., & Chesselet, M. F. (1995). Subthalamic nucleus lesions: Widespread effects on changes in gene expression induced by nigrostriatal dopamine depletion in rats. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 15(10), 6562–6575.

    CAS  Google Scholar 

  • DeLong, M. R. (1990). Primate models of movement disorders of basal ganglia origin. Trends in Neurosciences, 13(7), 281–285.

    CAS  PubMed  Google Scholar 

  • Deng, Y. P., Lei, W. L., & Reiner, A. (2006). Differential perikaryal localization in rats of D1 and D2 dopamine receptors on striatal projection neuron types identified by retrograde labeling. Journal of Chemical Neuroanatomy, 32(2–4), 101–116.

    CAS  PubMed  Google Scholar 

  • Descarries, L., & Mechawar, N. (2000). Ultrastructural evidence for diffuse transmission by monoamine and acetylcholine neurons of the central nervous system. Progress in Brain Research, 125, 27–47.

    CAS  PubMed  Google Scholar 

  • Descarries, L., Soghomonian, J. J., Garcia, S., Doucet, G., & Bruno, J. P. (1992). Ultrastructural analysis of the serotonin hyperinnervation in adult rat neostriatum following neonatal dopamine denervation with 6-hydroxydopamine. Brain Research, 569(1), 1–13.

    CAS  PubMed  Google Scholar 

  • Deumens, R., Blokland, A., & Prickaerts, J. (2002). Modeling Parkinson's disease in rats: An evaluation of 6-OHDA lesions of the nigrostriatal pathway. Experimental Neurology, 175(2), 303–317.

    CAS  PubMed  Google Scholar 

  • Dewar, K. M., Soghomonian, J. J., Bruno, J. P., Descarries, L., & Reader, T. A. (1990). Elevation of dopamine D2 but not D1 receptors in adult rat neostriatum after neonatal 6-hydroxydopamine denervation. Brain Research, 536(1–2), 287–296.

    CAS  PubMed  Google Scholar 

  • Dewar, K. M., Paquet, M., & Reader, T. A. (1997). Alterations in the turnover rate of dopamine D1 but not D2 receptors in the adult rat neostriatum after a neonatal dopamine denervation. Neurochemistry International, 30(6), 613–621.

    CAS  PubMed  Google Scholar 

  • Di Chiara, G., Morelli, M., & Consolo, S. (1994). Modulatory functions of neurotransmitters in the striatum: ACh/dopamine/NMDA interactions. Trends in Neurosciences, 17(6), 228–233.

    PubMed  Google Scholar 

  • Dragunow, M., Leah, J. D., & Faull, R. L. (1991). Prolonged and selective induction of Fos-related antigen(s) in striatal neurons after 6-hydroxydopamine lesions of the rat substantia nigra pars compacta. Brain Research. Molecular Brain Research, 10(4), 355–358.

    CAS  PubMed  Google Scholar 

  • Dravid, A., Jaton, A. L., Enz, A., & Frei, P. (1984). Spontaneous recovery from motor asymmetry in adult rats with 6-hydroxydopamine-induced partial lesions of the substantia nigra. Brain Research, 311(2), 361–365.

    CAS  PubMed  Google Scholar 

  • Duncan, G. E., Criswell, H. E., McCown, T. J., Paul, I. A., Mueller, R. A., & Breese, G. R. (1987). Behavioral and neurochemical responses to haloperidol and SCH-23390 in rats treated neonatally or as adults with 6-hydroxydopamine. The Journal of Pharmacology and Experimental Therapeutics, 243(3), 1027–1034.

    CAS  PubMed  Google Scholar 

  • Duncan, G. E., Breese, G. R., Criswell, H. E., Johnson, K. B., Schambra, U. B., Mueller, R. A., Caron, M. G., & Fremeau, R. T., Jr. (1993). D1 dopamine receptor binding and mRNA levels are not altered after neonatal 6-hydroxydopamine treatment: Evidence against dopamine-mediated induction of D1 dopamine receptors during postnatal development. Journal of Neurochemistry, 61(4), 1255–1262.

    CAS  PubMed  Google Scholar 

  • Dupre, K. B., Eskow, K. L., Steiniger, A., Klioueva, A., Negron, G. E., Lormand, L., Park, J. Y., & Bishop, C. (2008). Effects of coincident 5-HT1A receptor stimulation and NMDA receptor antagonism on L-DOPA-induced dyskinesia and rotational behaviors in the hemi-parkinsonian rat. Psychopharmacology, 199(1), 99–108.

    CAS  PubMed  Google Scholar 

  • Duty, S., & Jenner, P. (2011). Animal models of Parkinson’s disease: A source of novel treatments and clues to the cause of the disease. British Journal of Pharmacology, 164(4), 1357–1391.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Eidelberg, D. (1992). Positron emission tomography studies in parkinsonism. Neurologic Clinics, 10(2), 421–433.

    CAS  PubMed  Google Scholar 

  • el Mansari, M., Radja, F., Ferron, A., Reader, T. A., Molina-Holgado, E., & Descarries, L. (1994). Hypersensitivity to serotonin and its agonists in serotonin-hyperinnervated neostriatum after neonatal dopamine denervation. European Journal of Pharmacology, 261(1–2), 171–178.

    PubMed  Google Scholar 

  • Engber, T. M., Susel, Z., Kuo, S., Gerfen, C. R., & Chase, T. N. (1991). Levodopa replacement therapy alters enzyme activities in striatum and neuropeptide content in striatal output regions of 6-hydroxydopamine lesioned rats. Brain Research, 552(1), 113–118.

    CAS  PubMed  Google Scholar 

  • Engber, T. M., Boldry, R. C., Kuo, S., & Chase, T. N. (1992). Dopaminergic modulation of striatal neuropeptides: Differential effects of D1 and D2 receptor stimulation on somatostatin, neuropeptide Y, neurotensin, dynorphin and enkephalin. Brain Research, 581(2), 261–268.

    CAS  PubMed  Google Scholar 

  • Epstein, P. N., & Altshuler, H. L. (1978). Changes in the effects of cocaine during chronic treatment. Research Communications in Chemical Pathology and Pharmacology, 22(1), 93–105.

    CAS  PubMed  Google Scholar 

  • Erinoff, L., MacPhail, R. C., Heller, A., & Seiden, L. S. (1979). Age-dependent effects of 6-hydroxydopamine on locomotor activity in the rat. Brain Research, 164, 195–205.

    CAS  PubMed  Google Scholar 

  • Ernst, M., Zametkin, A. J., Matochik, J. A., Pascualvaca, D., Jons, P. H., Hardy, K., Hankerson, J. G., Doudet, D. J., & Cohen, R. M. (1996). Presynaptic dopaminergic deficits in Lesch-Nyhan disease. The New England Journal of Medicine, 334(24), 1568–1572.

    CAS  PubMed  Google Scholar 

  • Evetts, K. D., & Iversen, L. L. (1970). Effects of protriptyline on the depletion of catecholamines induced by 6-hydroxydopamine in the brain of the rat. The Journal of Pharmacy and Pharmacology, 22(7), 540–543.

    CAS  PubMed  Google Scholar 

  • Fallon, J. H., & Loughlin, S. E. (1982). Monoamine innervation of the forebrain: Collateralization. Brain Research Bulletin, 9(1–6), 295–307.

    CAS  PubMed  Google Scholar 

  • Fearnley, J. M., & Lees, A. J. (1991). Ageing and Parkinson’s disease: Substantia nigra regional selectivity. Brain: A Journal of Neurology, 114(Pt 5), 2283–2301.

    Google Scholar 

  • Fernandes Xavier, F. G., Doucet, G., Geffard, M., & Descarries, L. (1994). Dopamine neoinnervation in the substantia nigra and hyperinnervation in the interpeduncular nucleus of adult rat following neonatal cerebroventricular administration of 6-hydroxydopamine. Neuroscience, 59(1), 77–87.

    CAS  PubMed  Google Scholar 

  • Fibiger, H. C., Zis, A. P., & McGeer, E. G. (1973). Feeding and drinking deficits after 6-hydroxydopamine administration in the rat: Similarities to the lateral hypothalamic syndrome. Brain Research, 55(1), 135–148.

    CAS  PubMed  Google Scholar 

  • Filip, M., & Cunningham, K. A. (2002). Serotonin 5-HT(2C) receptors in nucleus accumbens regulate expression of the hyperlocomotive and discriminative stimulus effects of cocaine. Pharmacology, Biochemistry, and Behavior, 71(4), 745–756.

    CAS  PubMed  Google Scholar 

  • Filip, M., Bubar, M. J., & Cunningham, K. A. (2004). Contribution of serotonin (5-hydroxytryptamine; 5-HT) 5-HT2 receptor subtypes to the hyperlocomotor effects of cocaine: Acute and chronic pharmacological analyses. The Journal of Pharmacology and Experimental Therapeutics, 310(3), 1246–1254.

    CAS  PubMed  Google Scholar 

  • Finkelstein, D. I., Stanic, D., Parish, C. L., Tomas, D., Dickson, K., & Horne, M. K. (2000). Axonal sprouting following lesions of the rat substantia nigra. Neuroscience, 97(1), 99–112.

    CAS  PubMed  Google Scholar 

  • Fletcher, P. J., Grottick, A. J., & Higgins, G. A. (2002). Differential effects of the 5-HT(2A) receptor antagonist M100907 and the 5-HT(2C) receptor antagonist SB242084 on cocaine-induced locomotor activity, cocaine self-administration and cocaine-induced reinstatement of responding. Neuropsychopharmacology: Official Publication of the American College of Neuropsychopharmacology, 27(4), 576–586.

    CAS  Google Scholar 

  • Fornai, F., Biagioni, F., Fulceri, F., Murri, L., Ruggieri, S., & Paparelli, A. (2009). Intermittent Dopaminergic stimulation causes behavioral sensitization in the addicted brain and parkinsonism. International Review of Neurobiology, 88, 371–398.

    CAS  PubMed  Google Scholar 

  • Fornaretto, M. G., Caccia, C., Caron, M. G., & Fariello, R. G. (1993). Dopamine receptors status after unilateral nigral 6-OHDA lesion. Autoradiographic and in situ hybridization study in the rat brain. Molecular and Chemical Neuropathology/SPonsored by the International Society for Neurochemistry and the World Federation of Neurology and Research Groups on Neurochemistry and Cerebrospinal Fluid, 19(1–2), 147–162.

    CAS  Google Scholar 

  • Fox, S. H., & Brotchie, J. M. (2000). 5-HT2C receptor binding is increased in the substantia nigra pars reticulata in Parkinson’s disease. Movement Disorders: Official Journal of the Movement Disorder Society, 15(6), 1064–1069.

    CAS  Google Scholar 

  • Fuxe, K., Marcellino, D., Rivera, A., Diaz-Cabiale, Z., Filip, M., Gago, B., Roberts, D. C., Langel, U., Genedani, S., Ferraro, L., de la Calle, A., Narvaez, J., Tanganelli, S., Woods, A., & Agnati, L. F. (2008). Receptor-receptor interactions within receptor mosaics. Impact on neuropsychopharmacology. Brain Research Reviews, 58(2), 415–452.

    CAS  PubMed  Google Scholar 

  • Gelbard, H. A., Teicher, M. H., Baldessarini, R. J., Gallitano, A., Marsh, E. R., Zorc, J., & Faedda, G. (1990). Dopamine D1 receptor development depends on endogenous dopamine. Brain Research. Developmental Brain Research, 56(1), 137–140.

    CAS  PubMed  Google Scholar 

  • Geldwert, D., Norris, J. M., Feldman, I. G., Schulman, J. J., Joyce, M. P., & Rayport, S. (2006). Dopamine presynaptically and heterogeneously modulates nucleus accumbens medium-spiny neuron GABA synapses in vitro. BMC Neuroscience, 7, 53.

    PubMed Central  PubMed  Google Scholar 

  • Gerfen, C. R. (1992). The neostriatal mosaic: Multiple levels of compartmental organization in the basal ganglia. Annual Review of Neuroscience, 15, 285–320.

    CAS  PubMed  Google Scholar 

  • Gerfen, C. R. (2000). Molecular effects of dopamine on striatal-projection pathways. Trends in Neurosciences, 23(10 Suppl), S64–S70.

    CAS  PubMed  Google Scholar 

  • Gerfen, C. R., & Young, W. S., 3rd. (1988). Distribution of striatonigral and striatopallidal peptidergic neurons in both patch and matrix compartments: An in situ hybridization histochemistry and fluorescent retrograde tracing study. Brain Research, 460(1), 161–167.

    CAS  PubMed  Google Scholar 

  • Gerfen, C. R., Staines, W. A., Arbuthnott, G. W., & Fibiger, H. C. (1982). Crossed connections of the substantia nigra in the rat. The Journal of Comparative Neurology, 207(3), 283–303.

    CAS  PubMed  Google Scholar 

  • Gerfen, C. R., Herkenham, M., & Thibault, J. (1987). The neostriatal mosaic: II. Patch- and matrix-directed mesostriatal dopaminergic and non-dopaminergic systems. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 7(12), 3915–3934.

    CAS  Google Scholar 

  • Gerfen, C. R., Engber, T. M., Mahan, L. C., Susel, Z., Chase, T. N., Monsma, F. J., Jr., & Sibley, D. R. (1990). D1 and D2 dopamine receptor-regulated gene expression of striatonigral and striatopallidal neurons. Science, 250(4986), 1429–1432.

    CAS  PubMed  Google Scholar 

  • Gerfen, C. R., McGinty, J. F., & Young, W. S., 3rd. (1991). Dopamine differentially regulates dynorphin, substance P, and enkephalin expression in striatal neurons: In situ hybridization histochemical analysis. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 11(4), 1016–1031.

    CAS  Google Scholar 

  • Gerfen, C. R., Keefe, K. A., & Gauda, E. B. (1995). D1 and D2 dopamine receptor function in the striatum: Coactivation of D1- and D2-dopamine receptors on separate populations of neurons results in potentiated immediate early gene response in D1-containing neurons. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 15(12), 8167–8176.

    CAS  Google Scholar 

  • Gerfen, C. R., Miyachi, S., Paletzki, R., & Brown, P. (2002). D1 dopamine receptor supersensitivity in the dopamine-depleted striatum results from a switch in the regulation of ERK1/2/MAP kinase. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 22(12), 5042–5054.

    CAS  Google Scholar 

  • Girault, J. A., Valjent, E., Caboche, J., & Herve, D. (2007). ERK2: A logical AND gate critical for drug-induced plasticity? Current Opinion in Pharmacology, 7(1), 77–85.

    CAS  PubMed  Google Scholar 

  • Gong, L., & Kostrzewa, R. M. (1992). Supersensitized oral responses to a serotonin agonist in neonatal 6-OHDA-treated rats. Pharmacology, Biochemistry, and Behavior, 41(3), 621–623.

    CAS  PubMed  Google Scholar 

  • Gong, L., Kostrzewa, R. M., Brus, R., Fuller, R. W., & Perry, K. W. (1993a). Ontogenetic SKF 38393 treatments sensitize dopamine D1 receptors in neonatal 6-OHDA-lesioned rats. Brain Research. Developmental Brain Research, 76(1), 59–65.

    CAS  PubMed  Google Scholar 

  • Gong, L., Kostrzewa, R. M., Perry, K. W., & Fuller, R. W. (1993b). Dose-related effects of a neonatal 6-OHDA lesion on SKF 38393- and m-chlorophenylpiperazine-induced oral activity responses of rats. Brain Research. Developmental Brain Research, 76(2), 233–238.

    CAS  PubMed  Google Scholar 

  • Gong, L., Kostrzewa, R. M., & Li, C. (1994). Neonatal 6-hydroxydopamine and adult SKF 38393 treatments alter dopamine D1 receptor mRNA levels: Absence of other neurochemical associations with the enhanced behavioral responses of lesioned rats. Journal of Neurochemistry, 63(4), 1282–1290.

    CAS  PubMed  Google Scholar 

  • Graham, W. C., Crossman, A. R., & Woodruff, G. N. (1990). Autoradiographic studies in animal models of hemi-parkinsonism reveal dopamine D2 but not D1 receptor supersensitivity. I. 6-OHDA lesions of ascending mesencephalic dopaminergic pathways in the rat. Brain Research, 514(1), 93–102.

    CAS  PubMed  Google Scholar 

  • Graybiel, A. M. R., & Ragsdalev, C. W., Jr. (1983). Biochemical anatomy of the striatum. In P. C. Emson (Ed.), Chemical neuroanatomy (pp. 427–504). New York: Raven.

    Google Scholar 

  • Gresch, P. J., & Walker, P. D. (1999). Serotonin-2 receptor stimulation normalizes striatal preprotachykinin messenger RNA in an animal model of Parkinson’s disease. Neuroscience, 93(3), 831–841.

    CAS  PubMed  Google Scholar 

  • Guerra, M. J., Liste, I., & Labandeira-Garcia, J. L. (1997). Effects of lesions of the nigrostriatal pathway and of nigral grafts on striatal serotonergic innervation in adult rats. Neuroreport, 8(16), 3485–3488.

    CAS  PubMed  Google Scholar 

  • Guyenet, P. G., Javory, A. F., Beaujouan, J. C., Rossier, B. J., & Glowinski, J. (1975). Effects of dopaminergic receptor agonists and antagonists on the activity of the neo-striatal cholinergic system. Brain Research, 84(2), 227–244.

    CAS  PubMed  Google Scholar 

  • Hansen, J. T., Sakai, K., Greenamyre, J. T., & Moran, S. (1995). Sprouting of dopaminergic fibers from spared mesencephalic dopamine neurons in the unilateral partial lesioned rat. Brain Research, 670(2), 197–204.

    CAS  PubMed  Google Scholar 

  • Hanson, G. R., Alphs, L., Wolf, W., Levine, R., & Lovenberg, W. (1981). Haloperidol-induced reduction of nigral substance P-like immunoreactivity: A probe for the interactions between dopamine and substance P neuronal systems. The Journal of Pharmacology and Experimental Therapeutics, 218(2), 568–574.

    CAS  PubMed  Google Scholar 

  • Heffner, T. G., & Seiden, L. S. (1982). Possible involvement of serotonergic neurons in the reduction of locomotor hyperactivity caused by amphetamine in neonatal rats depleted of brain dopamine. Brain Research, 244(1), 81–90.

    CAS  PubMed  Google Scholar 

  • Heffner, T. G., & Seiden, L. S. (1983). Impaired acquisition of an operant response in young rats depleted of brain dopamine in neonatal life. Psychopharmacology, 79(2–3), 115–119.

    CAS  PubMed  Google Scholar 

  • Hefti, F., Melamed, E., & Wurtman, R. J. (1980). Partial lesions of the dopaminergic nigrostriatal system in rat brain: Biochemical characterization. Brain Research, 195(1), 123–137.

    CAS  PubMed  Google Scholar 

  • Hefti, F., Enz, A., & Melamed, E. (1985). Partial lesions of the nigrostriatal pathway in the rat. Acceleration of transmitter synthesis and release of surviving dopaminergic neurones by drugs. Neuropharmacology, 24(1), 19–23.

    CAS  PubMed  Google Scholar 

  • Henry, D. J., & White, F. J. (1991). Repeated cocaine administration causes persistent enhancement of D1 dopamine receptor sensitivity within the rat nucleus accumbens. The Journal of Pharmacology and Experimental Therapeutics, 258(3), 882–890.

    CAS  PubMed  Google Scholar 

  • Hetman, M., & Kharebava, G. (2006). Survival signaling pathways activated by NMDA receptors. Current Topics in Medicinal Chemistry, 6(8), 787–799.

    CAS  PubMed  Google Scholar 

  • Hikosaka, O., Takikawa, Y., & Kawagoe, R. (2000). Role of the basal ganglia in the control of purposive saccadic eye movements. Physiological Reviews, 80(3), 953–978.

    CAS  PubMed  Google Scholar 

  • Hollerman, J. R., & Grace, A. A. (1990). The effects of dopamine-depleting brain lesions on the electrophysiological activity of rat substantia nigra dopamine neurons. Brain Research, 533(2), 203–212.

    CAS  PubMed  Google Scholar 

  • Hollister, A. S., Breese, G. R., & Cooper, B. R. (1974). Comparison of tyrosine hydroxylase and dopamine-beta-hydroxylase inhibition with the effects of various 6-hydroxydopamine treatments on d-amphetamine induced motor activity. Psychopharmacologia, 36(1), 1–16.

    CAS  PubMed  Google Scholar 

  • Hollister, A. S., Breese, G. R., Kuhn, C. M., Cooper, B. R., & Schanberg, S. M. (1976). An inhibitory role for brain serotonin-containing systems in the locomotor effects of d-amphetamine. The Journal of Pharmacology and Experimental Therapeutics, 198(1), 12–22.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hong, J. S., Yang, H. T., & Costa, E. (1978a). Substance P content of substantia nigra after chronic treatment with antischizophrenic drugs. Neuropharmacology, 17(1), 83–85.

    CAS  PubMed  Google Scholar 

  • Hong, J. S., Yang, H. Y., Fratta, W., & Costa, E. (1978b). Rat striatal methionine-enkephalin content after chronic treatment with cataleptogenic and noncataleptogenic antischizophrenic drugs. The Journal of Pharmacology and Experimental Therapeutics, 205(1), 141–147.

    CAS  PubMed  Google Scholar 

  • Hong, J. S., Yang, H. Y., Gillin, J. C., Di Giulio, A. M., Fratta, W., & Costa, E. (1979). Chronic treatment with haloperidol accelerates the biosynthesis of enkephalins in rat striatum. Brain Research, 160(1), 192–195.

    CAS  PubMed  Google Scholar 

  • Hong, J. S., Yoshikawa, K., Kanamatsu, T., McGinty, J. F., Mitchell, C. L., & Sabol, S. L. (1985). Repeated electroconvulsive shocks alter the biosynthesis of enkephalin and concentration of dynorphin in the rat brain. Neuropeptides, 5(4–6), 557–560.

    CAS  PubMed  Google Scholar 

  • Hornykiewicz, O. (1975). Brain monoamines and parkinsonism. National Institute on Drug Abuse Research Monograph Series, 3, 13–21.

    CAS  PubMed  Google Scholar 

  • Hume, S. P., Opacka-Juffry, J., Myers, R., Ahier, R. G., Ashworth, S., Brooks, D. J., & Lammertsma, A. A. (1995). Effect of L-dopa and 6-hydroxydopamine lesioning on [11C]raclopride binding in rat striatum, quantified using PET. Synapse, 21(1), 45–53.

    CAS  PubMed  Google Scholar 

  • Hyttel, J. (1978). Effects of neuroleptics on 3H-haloperidol and 3H-cis(Z)-flupenthixol binding and on adenylate cyclase activity in vitro. Life Sciences, 23(6), 551–555.

    CAS  PubMed  Google Scholar 

  • Ingham, C. A., Hood, S. H., & Arbuthnott, G. W. (1991). A light and electron microscopical study of enkephalin-immunoreactive structures in the rat neostriatum after removal of the nigrostriatal dopaminergic pathway. Neuroscience, 42(3), 715–730.

    CAS  PubMed  Google Scholar 

  • Iwata, S., Shimizu, T., Nomoto, M., & Fukuda, T. (1996). Characteristic upregulation of dopamine D1-receptor in rat striatum after 6-hydroxydopamine treatment. Japanese Journal of Pharmacology, 71(3), 255–258.

    CAS  PubMed  Google Scholar 

  • Jackson, D., & Abercrombie, E. D. (1992). In vivo neurochemical evaluation of striatal serotonergic hyperinnervation in rats depleted of dopamine at infancy. Journal of Neurochemistry, 58(3), 890–897.

    CAS  PubMed  Google Scholar 

  • Jackson, D. M., & Hashizume, M. (1987). Bromocriptine-induced locomotor stimulation in mice is modulated by dopamine D-1 receptors. Journal of Neural Transmission, 69(1–2), 131–145.

    CAS  PubMed  Google Scholar 

  • Jackson, D., Bruno, J. P., Stachowiak, M. K., & Zigmond, M. J. (1988). Inhibition of striatal acetylcholine release by serotonin and dopamine after the intracerebral administration of 6-hydroxydopamine to neonatal rats. Brain Research, 457(2), 267–273.

    CAS  PubMed  Google Scholar 

  • Jankovic, J., Caskey, T. C., Stout, J. T., & Butler, I. J. (1988). Lesch-Nyhan syndrome: A study of motor behavior and cerebrospinal fluid neurotransmitters. Annals of Neurology, 23(5), 466–469.

    CAS  PubMed  Google Scholar 

  • Javitt, D. C., & Zukin, S. R. (1991). Recent advances in the phencyclidine model of schizophrenia. The American Journal of Psychiatry, 148(10), 1301–1308.

    CAS  PubMed  Google Scholar 

  • Jentsch, J. D., & Roth, R. H. (1999). The neuropsychopharmacology of phencyclidine: From NMDA receptor hypofunction to the dopamine hypothesis of schizophrenia. Neuropsychopharmacology: Official Publication of the American College of Neuropsychopharmacology, 20(3), 201–225.

    CAS  Google Scholar 

  • Jeon, B. S., Jackson-Lewis, V., & Burke, R. E. (1995). 6-Hydroxydopamine lesion of the rat substantia nigra: Time course and morphology of cell death. Neurodegeneration: A Journal for Neurodegenerative Disorders, Neuroprotection, and Neuroregeneration, 4(2), 131–137.

    CAS  Google Scholar 

  • Johnson, B. J., & Bruno, J. P. (1990). D1 and D2 receptor contributions to ingestive and locomotor behavior are altered after dopamine depletions in neonatal rats. Neuroscience Letters, 118(1), 120–123.

    CAS  PubMed  Google Scholar 

  • Johnson, B. J., & Bruno, J. P. (1992). D-1 and D-2 receptor mediation of sensorimotor behavior in rats depleted of dopamine during development. Behavioural Brain Research, 47(1), 49–58.

    CAS  PubMed  Google Scholar 

  • Johnson, G. L., & Lapadat, R. (2002). Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science, 298(5600), 1911–1912.

    CAS  PubMed  Google Scholar 

  • Johnson, K. B., Criswell, H. E., Jensen, K. F., Simson, P. E., Mueller, R. A., & Breese, G. R. (1992). Comparison of the D1-dopamine agonists SKF-38393 and A-68930 in neonatal 6-hydroxydopamine-lesioned rats: Behavioral effects and induction of c-fos-like immunoreactivity. The Journal of Pharmacology and Experimental Therapeutics, 262(2), 855–865.

    CAS  PubMed  Google Scholar 

  • Jonsson, G., & Sachs, C. (1970). Effects of 6-hydroxydopamine on the uptake and storage of noradrenaline in sympathetic adrenergic neurons. European Journal of Pharmacology, 9(2), 141–155.

    CAS  PubMed  Google Scholar 

  • Joyce, J. N. (1991a). Differential response of striatal dopamine and muscarinic cholinergic receptor subtypes to the loss of dopamine. I. Effects of intranigral or intracerebroventricular 6-hydroxydopamine lesions of the mesostriatal dopamine system. Experimental Neurology, 113(3), 261–276.

    CAS  PubMed  Google Scholar 

  • Joyce, J. N. (1991b). Differential response of striatal dopamine and muscarinic cholinergic receptor subtypes to the loss of dopamine. II. Effects of 6-hydroxydopamine or colchicine microinjections into the VTA or reserpine treatment. Experimental Neurology, 113(3), 277–290.

    CAS  PubMed  Google Scholar 

  • Joyce, E. M., & Iversen, S. D. (1979). The effect of morphine applied locally to mesencephalic dopamine cell bodies on spontaneous motor activity in the rat. Neuroscience Letters, 14(2–3), 207–212.

    CAS  PubMed  Google Scholar 

  • Kaakkola, S. (1980). Contralateral circling behaviour induced by intranigral injection of morphine and enkephalin analogue FK 33-824 in rats. Acta Pharmacologica et Toxicologica, 47(5), 385–393.

    CAS  PubMed  Google Scholar 

  • Kalivas, P. W., Widerlov, E., Stanley, D., Breese, G., & Prange, A. J., Jr. (1983). Enkephalin action on the mesolimbic system: A dopamine-dependent and a dopamine-independent increase in locomotor activity. The Journal of Pharmacology and Experimental Therapeutics, 227(1), 229–237.

    CAS  PubMed  Google Scholar 

  • Karler, R., Calder, L. D., Chaudhry, I. A., & Turkanis, S. A. (1989). Blockade of “reverse tolerance” to cocaine and amphetamine by MK-801. Life Sciences, 45(7), 599–606.

    CAS  PubMed  Google Scholar 

  • Katz, J., Nielsen, K. M., & Soghomonian, J. J. (2005). Comparative effects of acute or chronic administration of levodopa to 6-hydroxydopamine-lesioned rats on the expression of glutamic acid decarboxylase in the neostriatum and GABAA receptors subunits in the substantia nigra, pars reticulata. Neuroscience, 132(3), 833–842.

    CAS  PubMed  Google Scholar 

  • Kawai, Y., Takagi, H., Kumoi, Y., Shiosaka, S., & Tohyama, M. (1987). Nigrostriatal dopamine neurons receive substance P-ergic inputs in the substantia nigra: Application of the immunoelectron microscopic mirror technique to fluorescent double-staining for transmitter-specific projections. Brain Research, 401(2), 371–376.

    CAS  PubMed  Google Scholar 

  • Kehne, J. H., Ketteler, H. J., McCloskey, T. C., Sullivan, C. K., Dudley, M. W., & Schmidt, C. J. (1996). Effects of the selective 5-HT2A receptor antagonist MDL 100,907 on MDMA-induced locomotor stimulation in rats. Neuropsychopharmacology: Official Publication of the American College of Neuropsychopharmacology, 15(2), 116–124.

    CAS  Google Scholar 

  • Klockgether, T., & Turski, L. (1990). NMDA antagonists potentiate antiparkinsonian actions of L-dopa in monoamine-depleted rats. Annals of Neurology, 28(4), 539–546.

    CAS  PubMed  Google Scholar 

  • Kopin, I. J. (1981). Neurotransmitters and the Lesch-Nyhan syndrome. The New England Journal of Medicine, 305(19), 1148–1150.

    CAS  PubMed  Google Scholar 

  • Kostrzewa, R. M., & Brus, R. (1991). Ontogenic homologous supersensitization of quinpirole-induced yawning in rats. Pharmacology, Biochemistry, and Behavior, 39(2), 517–519.

    CAS  PubMed  Google Scholar 

  • Kostrzewa, R. M., & Gong, L. (1991). Supersensitized D1 receptors mediate enhanced oral activity after neonatal 6-OHDA. Pharmacology, Biochemistry, and Behavior, 39(3), 677–682.

    CAS  PubMed  Google Scholar 

  • Kostrzewa, R. M., & Hamdi, A. (1991). Potentiation of spiperone-induced oral activity in rats after neonatal 6-hydroxydopamine. Pharmacology, Biochemistry, and Behavior, 38(1), 215–218.

    CAS  PubMed  Google Scholar 

  • Kostrzewa, R. M., & Kostrzewa, F. P. (2012). Neonatal 6-hydroxydopamine lesioning enhances quinpirole-induced vertical jumping in rats that were quinpirole primed during postnatal ontogeny. Neurotoxicity Research, 21(2), 231–235.

    CAS  PubMed  Google Scholar 

  • Kostrzewa, R. M., Gong, L., & Brus, R. (1993). Serotonin (5-HT) systems mediate dopamine (DA) receptor supersensitivity. Acta Neurobiologiae Experimentalis, 53(1), 31–41.

    CAS  PubMed  Google Scholar 

  • Kostrzewa, R. M., Brus, R., Kalbfleisch, J. H., Perry, K. W., & Fuller, R. W. (1994). Proposed animal model of attention deficit hyperactivity disorder. Brain Research Bulletin, 34(2), 161–167.

    CAS  PubMed  Google Scholar 

  • Kostrzewa, R. M., Reader, T. A., & Descarries, L. (1998). Serotonin neural adaptations to ontogenetic loss of dopamine neurons in rat brain. Journal of Neurochemistry, 70(3), 889–898.

    CAS  PubMed  Google Scholar 

  • Kubota, Y., Inagaki, S., & Kito, S. (1986a). Innervation of substance P neurons by catecholaminergic terminals in the neostriatum. Brain Research, 375(1), 163–167.

    CAS  PubMed  Google Scholar 

  • Kubota, Y., Inagaki, S., Kito, S., Takagi, H., & Smith, A. D. (1986b). Ultrastructural evidence of dopaminergic input to enkephalinergic neurons in rat neostriatum. Brain Research, 367(1–2), 374–378.

    CAS  PubMed  Google Scholar 

  • Kuribara, H. (1995a). Dopamine D1 receptor antagonist SCH 23390 retards methamphetamine sensitization in both combined administration and early posttreatment schedules in mice. Pharmacology, Biochemistry, and Behavior, 52(4), 759–763.

    CAS  PubMed  Google Scholar 

  • Kuribara, H. (1995b). Modification of cocaine sensitization by dopamine D1 and D2 receptor antagonists in terms of ambulation in mice. Pharmacology, Biochemistry, and Behavior, 51(4), 799–805.

    CAS  PubMed  Google Scholar 

  • Kurumaji, A., Takashima, M., Watanabe, S., & Takahashi, K. (1988). An increase in striatal Met-enkephalin-like immunoreactivity in neonatally dopamine-depleted rats. Neuroscience Letters, 87(1–2), 109–113.

    CAS  PubMed  Google Scholar 

  • LaHoste, G. J., Henry, B. L., & Marshall, J. F. (2000). Dopamine D1 receptors synergize with D2, but not D3 or D4, receptors in the striatum without the involvement of action potentials. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 20(17), 6666–6671.

    CAS  Google Scholar 

  • Laprade, N., & Soghomonian, J. J. (1999). Gene expression of the GAD67 and GAD65 isoforms of glutamate decarboxylase is differentially altered in subpopulations of striatal neurons in adult rats lesioned with 6-OHDA as neonates. Synapse, 33(1), 36–48.

    CAS  PubMed  Google Scholar 

  • Laprade, N., Radja, F., Reader, T. A., & Soghomonian, J. J. (1996). Dopamine receptor agonists regulate levels of the serotonin 5-HT2A receptor and its mRNA in a subpopulation of rat striatal neurons. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 16(11), 3727–3736.

    CAS  Google Scholar 

  • Laverty, R., Sharman, D. F., & Vogt, M. (1965). Action of 2, 4, 5-Trihydroxyphenylethylamine on the Storage and Release of Noradrenaline. British Journal of Pharmacology and Chemotherapy, 24, 549–560.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lawler, C. P., Gilmore, J. H., Watts, V. J., Walker, Q. D., Southerland, S. B., Cook, L. L., Mathis, C. A., & Mailman, R. B. (1995). Interhemispheric modulation of dopamine receptor interactions in unilateral 6-OHDA rodent model. Synapse, 21(4), 299–311.

    CAS  PubMed  Google Scholar 

  • Lee, F. J., Pei, L., & Liu, F. (2009). Disruption of the dopamine transporter-dopamine D2 receptor interaction in schizophrenia. Synapse, 63(8), 710–712.

    CAS  PubMed  Google Scholar 

  • Lees, G. J., Kydd, R. R., & Wright, J. J. (1985). Relationship between sensorimotor neglect and the specificity, degree and locus of mesotelencephalic dopaminergic cell loss following 6-hydroxydopamine. Psychopharmacology, 85(1), 115–122.

    CAS  PubMed  Google Scholar 

  • Lesch, M., & Nyhan, W. L. (1964). A familial disorder of uric acid metabolism and central nervous system function. The American Journal of Medicine, 36, 561–570.

    CAS  PubMed  Google Scholar 

  • Li, S. J., Sivam, S. P., McGinty, J. F., Huang, Y. S., & Hong, J. S. (1987). Dopaminergic regulation of tachykinin metabolism in the striatonigral pathway. The Journal of Pharmacology and Experimental Therapeutics, 243(2), 792–798.

    CAS  PubMed  Google Scholar 

  • Li, Y., Huang, X. F., Deng, C., Meyer, B., Wu, A., Yu, Y., Ying, W., Yang, G. Y., Yenari, M. A., & Wang, Q. (2010). Alterations in 5-HT2A receptor binding in various brain regions among 6-hydroxydopamine-induced Parkinsonian rats. Synapse, 64(3), 224–230.

    CAS  PubMed  Google Scholar 

  • Liberatore, G. T., Finkelstein, D. I., Wong, J. Y., Horne, M. K., Porritt, M. J., Donnan, G. A., & Howells, D. W. (1999). Sprouting of dopaminergic axons after striatal injury: Confirmation by markers not dependent on dopamine metabolism. Experimental Neurology, 159(2), 565–573.

    CAS  PubMed  Google Scholar 

  • Lidov, H. G., & Molliver, M. E. (1982). An immunohistochemical study of serotonin neuron development in the rat: Ascending pathways and terminal fields. Brain Research Bulletin, 8(4), 389–430.

    CAS  PubMed  Google Scholar 

  • Lindefors, N., Brodin, E., Tossman, U., Segovia, J., & Ungerstedt, U. (1989). Tissue levels and in vivo release of tachykinins and GABA in striatum and substantia nigra of rat brain after unilateral striatal dopamine denervation. Experimental Brain Research Experimentelle Hirnforschung Experimentation Cerebrale, 74(3), 527–534.

    CAS  Google Scholar 

  • Lindefors, N., Brene, S., & Persson, H. (1990). Increased expression of glutamic acid decarboxylase mRNA in rat substantia nigra after an ibotenic acid lesion in the caudate-putamen. Brain Research. Molecular Brain Research, 7(3), 207–212.

    CAS  PubMed  Google Scholar 

  • Lindgren, H. S., Andersson, D. R., Lagerkvist, S., Nissbrandt, H., & Cenci, M. A. (2010). L-DOPA-induced dopamine efflux in the striatum and the substantia nigra in a rat model of Parkinson’s disease: Temporal and quantitative relationship to the expression of dyskinesia. Journal of Neurochemistry, 112(6), 1465–1476.

    CAS  PubMed  Google Scholar 

  • Lisovoski, F., Haby, C., Borrelli, E., Schleef, C., Revel, M. O., Hindelang, C., & Zwiller, J. (1992). Induction of D2 dopamine receptor mRNA synthesis in a 6-hydroxydopamine parkinsonian rat model. Brain Research Bulletin, 28(5), 697–701.

    CAS  PubMed  Google Scholar 

  • Ljungdahl, A., Hokfelt, T., Jonsson, G., & Sachs, C. (1971). Autoradiographic demonstration of uptake and accumulation of 3H-6-hydroxydopamine in adrenergic nerves. Experientia, 27(3), 297–299.

    CAS  PubMed  Google Scholar 

  • Lloyd, K. G., Hornykiewicz, O., Davidson, L., Shannak, K., Farley, I., Goldstein, M., Shibuya, M., Kelley, W. N., & Fox, I. H. (1981). Biochemical evidence of dysfunction of brain neurotransmitters in the Lesch-Nyhan syndrome. The New England Journal of Medicine, 305(19), 1106–1111.

    CAS  PubMed  Google Scholar 

  • Longoni, R., Spina, L., & Di Chiara, G. (1987). Permissive role of D-1 receptor stimulation for the expression of D-2 mediated behavioral responses: A quantitative phenomenological study in rats. Life Sciences, 41(18), 2135–2145.

    CAS  PubMed  Google Scholar 

  • Lonze, B. E., & Ginty, D. D. (2002). Function and regulation of CREB family transcription factors in the nervous system. Neuron, 35(4), 605–623.

    CAS  PubMed  Google Scholar 

  • Loopuijt, L. D., & van der Kooy, D. (1985). Organization of the striatum: Collateralization of its efferent axons. Brain Research, 348(1), 86–99.

    CAS  PubMed  Google Scholar 

  • Lucas, G., & Spampinato, U. (2000). Role of striatal serotonin 2A and serotonin 2C receptor subtypes in the control of in vivo dopamine outflow in the rat striatum. Journal of Neurochemistry, 74(2), 693–701.

    CAS  PubMed  Google Scholar 

  • Luthman, J., Bolioli, B., Tsutsumi, T., Verhofstad, A., & Jonsson, G. (1987). Sprouting of striatal serotonin nerve terminals following selective lesions of nigro-striatal dopamine neurons in neonatal rat. Brain Research Bulletin, 19(2), 269–274.

    CAS  PubMed  Google Scholar 

  • Luthman, J., Fredriksson, A., Lewander, T., Jonsson, G., & Archer, T. (1989a). Effects of d-amphetamine and methylphenidate on hyperactivity produced by neonatal 6-hydroxydopamine treatment. Psychopharmacology, 99(4), 550–557.

    CAS  PubMed  Google Scholar 

  • Luthman, J., Fredriksson, A., Sundstrom, E., Jonsson, G., & Archer, T. (1989b). Selective lesion of central dopamine or noradrenaline neuron systems in the neonatal rat: Motor behavior and monoamine alterations at adult stage. Behavioural Brain Research, 33(3), 267–277.

    CAS  PubMed  Google Scholar 

  • Luthman, J., Brodin, E., Sundstrom, E., & Wiehager, B. (1990a). Studies on brain monoamine and neuropeptide systems after neonatal intracerebroventricular 6-hydroxydopamine treatment. International Journal of Developmental Neuroscience: The Official Journal of the International Society for Developmental Neuroscience, 8(5), 549–560.

    CAS  Google Scholar 

  • Luthman, J., Lindqvist, E., Young, D., & Cowburn, R. (1990b). Neonatal dopamine lesion in the rat results in enhanced adenylate cyclase activity without altering dopamine receptor binding or dopamine- and adenosine 3′:5′-monophosphate-regulated phosphoprotein (DARPP-32) immunoreactivity. Experimental Brain Research Experimentelle Hirnforschung Experimentation Cerebrale, 83(1), 85–95.

    CAS  Google Scholar 

  • Luthman, J., Fredriksson, A., Plaznik, A., & Archer, T. (1991). Ketanserin and mianserin treatment reverses hyperactivity in neonatally dopamine-lesioned rats. Journal of Psychopharmacology, 5(4), 418–425.

    CAS  PubMed  Google Scholar 

  • Luthman, J., Lindqvist, E., & Ogren, S. O. (1995). Hyperactivity in neonatally dopamine-lesioned rats requires residual activity in mesolimbic dopamine neurons. Pharmacology, Biochemistry, and Behavior, 51(1), 159–163.

    CAS  PubMed  Google Scholar 

  • Lytle, L. D., Shoemaker, W. J., Cottman, K., & Wurtman, R. J. (1972). Long-term effects of postnatal 6-hydroxydopamine treatment on tissue catecholamine levels. The Journal of Pharmacology and Experimental Therapeutics, 183(1), 56–64.

    CAS  PubMed  Google Scholar 

  • MacKenzie, R. G., Stachowiak, M. K., & Zigmond, M. J. (1989). Dopaminergic inhibition of striatal acetylcholine release after 6-hydroxydopamine. European Journal of Pharmacology, 168(1), 43–52.

    CAS  PubMed  Google Scholar 

  • Maeda, T., Kannari, K., Shen, H., Arai, A., Tomiyama, M., Matsunaga, M., & Suda, T. (2003). Rapid induction of serotonergic hyperinnervation in the adult rat striatum with extensive dopaminergic denervation. Neuroscience Letters, 343(1), 17–20.

    CAS  PubMed  Google Scholar 

  • Malhotra, A. K., Pinals, D. A., Adler, C. M., Elman, I., Clifton, A., Pickar, D., & Breier, A. (1997). Ketamine-induced exacerbation of psychotic symptoms and cognitive impairment in neuroleptic-free schizophrenics. Neuropsychopharmacology: Official Publication of the American College of Neuropsychopharmacology, 17(3), 141–150.

    CAS  Google Scholar 

  • Mallet, N., Ballion, B., Le Moine, C., & Gonon, F. (2006). Cortical inputs and GABA interneurons imbalance projection neurons in the striatum of parkinsonian rats. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 26(14), 3875–3884.

    CAS  Google Scholar 

  • Marshall, J. F. (1979). Somatosensory inattention after dopamine-depleting intracerebral 6-OHDA injections: Spontaneous recovery and pharmacological control. Brain Research, 177(2), 311–324.

    CAS  PubMed  Google Scholar 

  • Marshall, J. F., & Teitelbaum, P. (1974). Further analysis of sensory inattention following lateral hypothalamic damage in rats. Journal of Comparative and Physiological Psychology, 86(3), 375–395.

    CAS  PubMed  Google Scholar 

  • Marshall, J. F., & Ungerstedt, U. (1977). Supersensitivity to apomorphine following destruction of the ascending dopamine neurons: Quantification using the rotational model. European Journal of Pharmacology, 41(4), 361–367.

    CAS  PubMed  Google Scholar 

  • Marshall, J. F., Richardson, J. S., & Teitelbaum, P. (1974). Nigrostriatal bundle damage and the lateral hypothalamic syndrome. Journal of Comparative and Physiological Psychology, 87(5), 808–830.

    CAS  PubMed  Google Scholar 

  • Marshall, J. F., Navarrete, R., & Joyce, J. N. (1989). Decreased striatal D1 binding density following mesotelencephalic 6-hydroxydopamine injections: An autoradiographic analysis. Brain Research, 493(2), 247–257.

    CAS  PubMed  Google Scholar 

  • Martorana, A., Fusco, F. R., D’Angelo, V., Sancesario, G., & Bernardi, G. (2003). Enkephalin, neurotensin, and substance P immunoreactivite neurones of the rat GP following 6-hydroxydopamine lesion of the substantia nigra. Experimental Neurology, 183(2), 311–319.

    CAS  PubMed  Google Scholar 

  • Martres, M. P., Sokoloff, P., Giros, B., & Schwartz, J. C. (1992). Effects of dopaminergic transmission interruption on the D2 receptor isoforms in various cerebral tissues. Journal of Neurochemistry, 58(2), 673–679.

    CAS  PubMed  Google Scholar 

  • McCreary, A. C., & Marsden, C. A. (1993). Cocaine-induced behaviour: Dopamine D1 receptor antagonism by SCH 23390 prevents expression of conditioned sensitisation following repeated administration of cocaine. Neuropharmacology, 32(4), 387–391.

    CAS  PubMed  Google Scholar 

  • McQuade, R. D., Ford, D., Duffy, R. A., Chipkin, R. E., Iorio, L. C., & Barnett, A. (1988). Serotonergic component of SCH 23390: In vitro and in vivo binding analyses. Life Sciences, 43(23), 1861–1869.

    CAS  PubMed  Google Scholar 

  • Mengod, G., Nguyen, H., Le, H., Waeber, C., Lubbert, H., & Palacios, J. M. (1990). The distribution and cellular localization of the serotonin 1C receptor mRNA in the rodent brain examined by in situ hybridization histochemistry. Comparison with receptor binding distribution. Neuroscience, 35(3), 577–591.

    CAS  PubMed  Google Scholar 

  • Mennicken, F., Savasta, M., Chritin, M., Feuerstein, C., Le Moal, M., Herman, J. P., & Abrous, D. N. (1995). The neonatal lesion of the meso-telencephalic dopaminergic pathway increases intrastriatal D2 receptor levels and synthesis and this effect is reversed by neonatal dopaminergic rich-graft. Brain Research. Molecular Brain Research, 28(2), 211–221.

    CAS  PubMed  Google Scholar 

  • Miller, F. E., Heffner, T. G., Kotake, C., & Seiden, L. S. (1981). Magnitude and duration of hyperactivity following neonatal 6-hydroxydopamine is related to the extent of brain dopamine depletion. Brain Research, 229(1), 123–132.

    CAS  PubMed  Google Scholar 

  • Molina-Holgado, E., Dewar, K. M., Grondin, L., van Gelder, N. M., & Reader, T. A. (1993a). Amino acid levels and gamma-aminobutyric acidA receptors in rat neostriatum, cortex, and thalamus after neonatal 6-hydroxydopamine lesion. Journal of Neurochemistry, 60(3), 936–945.

    CAS  PubMed  Google Scholar 

  • Molina-Holgado, E., Dewar, K. M., Grondin, L., van Gelder, N. M., & Reader, T. A. (1993b). Changes of amino acid and monoamine levels after neonatal 6-hydroxydopamine denervation in rat basal ganglia, substantia nigra, and Raphe nuclei. Journal of Neuroscience Research, 35(4), 409–418.

    CAS  PubMed  Google Scholar 

  • Molina-Holgado, E., Dewar, K. M., Descarries, L., & Reader, T. A. (1994). Altered dopamine and serotonin metabolism in the dopamine-denervated and serotonin-hyperinnervated neostriatum of adult rat after neonatal 6-hydroxydopamine. The Journal of Pharmacology and Experimental Therapeutics, 270(2), 713–721.

    CAS  PubMed  Google Scholar 

  • Molina-Holgado, E., Van Gelder, N. M., Dewar, K. M., & Reader, T. A. (1995). Dopamine receptor alterations correlate with increased GABA levels in adult rat neostriatum: Effects of a neonatal 6-hydroxydopamine denervation. Neurochemistry International, 27(4–5), 443–451.

    CAS  PubMed  Google Scholar 

  • Molloy, A. G., & Waddington, J. L. (1984). Dopaminergic behaviour stereospecific promoted by the D1 agonist R-SK & F 38393 and selectively blocked by the D1 antagonist SCH 23390. Psychopharmacology, 82(4), 409–410.

    CAS  PubMed  Google Scholar 

  • Moran-Gates, T., Zhang, K., Baldessarini, R. J., & Tarazi, F. I. (2005). Atomoxetine blocks motor hyperactivity in neonatal 6-hydroxydopamine-lesioned rats: Implications for treatment of attention-deficit hyperactivity disorder. The International Journal of Neuropsychopharmacology, 8(3), 439–444.

    CAS  PubMed  Google Scholar 

  • Morelli, M., & Di Chiara, G. (1987). Agonist-induced homologous and heterologous sensitization to D-1- and D-2-dependent contraversive turning. European Journal of Pharmacology, 141(1), 101–107.

    CAS  PubMed  Google Scholar 

  • Morelli, M., & Di Chiara, G. (1990a). MK-801 potentiates dopaminergic D1 but reduces D2 responses in the 6-hydroxydopamine model of Parkinson’s disease. European Journal of Pharmacology, 182(3), 611–612.

    CAS  PubMed  Google Scholar 

  • Morelli, M., & Di Chiara, G. (1990b). Stereospecific blockade of N-methyl-D-aspartate transmission by MK 801 prevents priming of SKF 38393-induced turning. Psychopharmacology, 101(2), 287–288.

    CAS  PubMed  Google Scholar 

  • Morelli, M., Fenu, S., & Di Chiara, G. (1992). Blockade of N-methyl-D-aspartate receptors potentiates dopaminergic responses in the 6-OHDA model of Parkinson: Differential role of D-1 and D-2 receptors. Neurochemistry International, 20(Suppl), 261S–264S.

    CAS  PubMed  Google Scholar 

  • Morelli, M., Cozzolino, A., Pinna, A., Fenu, S., Carta, A., & Di Chiara, G. (1993). L-dopa stimulates c-fos expression in dopamine denervated striatum by combined activation of D-1 and D-2 receptors. Brain Research, 623(2), 334–336.

    CAS  PubMed  Google Scholar 

  • Morelli, M., Pinna, A., Fenu, S., Carta, A., Cozzolino, A., & Di Chiara, G. (1994). Differential effect of MK 801 and scopolamine on c-fos expression induced by L-dopa in the striatum of 6-hydroxydopamine lesioned rats. Synapse, 18(4), 288–293.

    CAS  PubMed  Google Scholar 

  • Morgan, S., Steiner, H., Rosenkranz, C., & Huston, J. P. (1986). Dissociation of crossed and uncrossed nigrostriatal projections with respect to site of origin in the rat. Neuroscience, 17(3), 609–614.

    CAS  PubMed  Google Scholar 

  • Morris, R. G., Anderson, E., Lynch, G. S., & Baudry, M. (1986). Selective impairment of learning and blockade of long-term potentiation by an N-methyl-D-aspartate receptor antagonist, AP5. Nature, 319(6056), 774–776.

    CAS  PubMed  Google Scholar 

  • Moy, S. S. (1995). Impaired acquisition and operant responding after neonatal dopamine depletion in rats. Pharmacology, Biochemistry, and Behavior, 52(2), 433–441.

    CAS  PubMed  Google Scholar 

  • Moy, S. S., & Breese, G. R. (2002). Phencyclidine supersensitivity in rats with neonatal dopamine loss. Psychopharmacology, 161(3), 255–262.

    CAS  PubMed  Google Scholar 

  • Moy, S. S., Breese, G. R., & Eckerman, D. A. (1994). Altered activity patterns following neonatal 6-hydroxydopamine lesions to dopaminergic neurons: Effect of SKF-38393. Brain Research, 645(1–2), 49–60.

    CAS  PubMed  Google Scholar 

  • Moy, S. S., Fernandes, A., Qian, Y., Rotella, D. J., Kostrewa, R. M., & Breese, G. R. (2004). Effect of acute and chronic olanzapine treatment on phencyclidine-induced behavioral sensitization in rats with neonatal dopamine loss. Pharmacology, Biochemistry, and Behavior, 78(1), 47–56.

    CAS  PubMed  Google Scholar 

  • Murrin, L. C., Gale, K., & Kuhar, M. J. (1979). Autoradiographic localization of neuroleptic and dopamine receptors in the caudate-putamen and substantia nigra: Effects of lesions. European Journal of Pharmacology, 60(2–3), 229–235.

    CAS  PubMed  Google Scholar 

  • Nagy, J. I., Vincent, S. R., & Fibiger, H. C. (1978). Altered neurotransmitter synthetic enzyme activity in some extrapyramidal nuclei after lesions of the nigro-striatal dopamine projection. Life Sciences, 22(20), 1777–1782.

    CAS  PubMed  Google Scholar 

  • Narang, N., & Wamsley, J. K. (1995). Time dependent changes in DA uptake sites, D1 and D2 receptor binding and mRNA after 6-OHDA lesions of the medial forebrain bundle in the rat brain. Journal of Chemical Neuroanatomy, 9(1), 41–53.

    CAS  PubMed  Google Scholar 

  • Navailles, S., Bioulac, B., Gross, C., & De Deurwaerdere, P. (2010). Serotonergic neurons mediate ectopic release of dopamine induced by L-DOPA in a rat model of Parkinson’s disease. Neurobiology of Disease, 38(1), 136–143.

    CAS  PubMed  Google Scholar 

  • Neve, K. A., Kozlowski, M. R., & Marshall, J. F. (1982). Plasticity of neostriatal dopamine receptors after nigrostriatal injury: Relationship to recovery of sensorimotor functions and behavioral supersensitivity. Brain Research, 244(1), 33–44.

    CAS  PubMed  Google Scholar 

  • Neve, K. A., Loeschen, S., & Marshall, J. F. (1985). Denervation accelerates the reappearance of neostriatal D-2 receptors after irreversible receptor blockade. Brain Research, 329(1–2), 225–231.

    CAS  PubMed  Google Scholar 

  • Neve, K. A., Neve, R. L., Fidel, S., Janowsky, A., & Higgins, G. A. (1991). Increased abundance of alternatively spliced forms of D2 dopamine receptor mRNA after denervation. Proceedings of the National Academy of Sciences of the United States of America, 88(7), 2802–2806.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nguyen, T. V., Brownell, A. L., Iris Chen, Y. C., Livni, E., Coyle, J. T., Rosen, B. R., Cavagna, F., & Jenkins, B. G. (2000). Detection of the effects of dopamine receptor supersensitivity using pharmacological MRI and correlations with PET. Synapse, 36(1), 57–65.

    CAS  PubMed  Google Scholar 

  • Nikolaus, S., Larisch, R., Beu, M., Forutan, F., Vosberg, H., & Muller-Gartner, H. W. (2003). Bilateral increase in striatal dopamine D2 receptor density in the 6-hydroxydopamine-lesioned rat: A serial in vivo investigation with small animal PET. European Journal of Nuclear Medicine and Molecular Imaging, 30(3), 390–395.

    CAS  PubMed  Google Scholar 

  • Nisenbaum, E. S., Stricker, E. M., Zigmond, M. J., & Berger, T. W. (1986). Long-term effects of dopamine-depleting brain lesions on spontaneous activity of type II striatal neurons: Relation to behavioral recovery. Brain Research, 398(2), 221–230.

    CAS  PubMed  Google Scholar 

  • Nisenbaum, L. K., Kitai, S. T., Crowley, W. R., & Gerfen, C. R. (1994a). Temporal dissociation between changes in striatal enkephalin and substance P messenger RNAs following striatal dopamine depletion. Neuroscience, 60(4), 927–937.

    CAS  PubMed  Google Scholar 

  • Nisenbaum, L. K., Kitai, S. T., & Gerfen, C. R. (1994b). Dopaminergic and muscarinic regulation of striatal enkephalin and substance P messenger RNAs following striatal dopamine denervation: Effects of systemic and central administration of quinpirole and scopolamine. Neuroscience, 63(2), 435–449.

    CAS  PubMed  Google Scholar 

  • Nishikawa, T., Mataga, N., Takashima, M., & Toru, M. (1983). Behavioral sensitization and relative hyperresponsiveness of striatal and limbic dopaminergic neurons after repeated methamphetamine treatment. European Journal of Pharmacology, 88(2–3), 195–203.

    CAS  PubMed  Google Scholar 

  • Numan, S., Lundgren, K. H., Wright, D. E., Herman, J. P., & Seroogy, K. B. (1995). Increased expression of 5HT2 receptor mRNA in rat striatum following 6-OHDA lesions of the adult nigrostriatal pathway. Brain Research. Molecular Brain Research, 29(2), 391–396.

    CAS  PubMed  Google Scholar 

  • Nyhan, W. L. (1968). Clinical features of the Lesch-Nyhan syndrome. Introduction–clinical and genetic features. Federation Proceedings, 27(4), 1027–1033.

    CAS  PubMed  Google Scholar 

  • O’Boyle, K. M., Gaitanopoulos, D. E., Brenner, M., & Waddington, J. L. (1989). Agonist and antagonist properties of benzazepine and thienopyridine derivatives at the D1 dopamine receptor. Neuropharmacology, 28(4), 401–405.

    PubMed  Google Scholar 

  • O’Connor, W. T., Lindefors, N., Brene, S., Herrera-Marschitz, M., Persson, H., & Ungerstedt, U. (1991). Short-term dopaminergic regulation of GABA release in dopamine deafferented caudate-putamen is not directly associated with glutamic acid decarboxylase gene expression. Neuroscience Letters, 128(1), 66–70.

    PubMed  Google Scholar 

  • O’Neill, M. F., Heron-Maxwell, C. L., & Shaw, G. (1999). 5-HT2 receptor antagonism reduces hyperactivity induced by amphetamine, cocaine, and MK-801 but not D1 agonist C-APB. Pharmacology, Biochemistry, and Behavior, 63(2), 237–243.

    PubMed  Google Scholar 

  • Obeso, J. A., Rodriguez-Oroz, M. C., Rodriguez, M., Lanciego, J. L., Artieda, J., Gonzalo, N., & Olanow, C. W. (2000). Pathophysiology of the basal ganglia in Parkinson’s disease. Trends in Neurosciences, 23(10 Suppl), S8–S19.

    CAS  PubMed  Google Scholar 

  • Obeso, J. A., Rodriguez-Oroz, M., Marin, C., Alonso, F., Zamarbide, I., Lanciego, J. L., & Rodriguez-Diaz, M. (2004). The origin of motor fluctuations in Parkinson’s disease: Importance of dopaminergic innervation and basal ganglia circuits. Neurology, 62(1 Suppl 1), S17–S30.

    CAS  PubMed  Google Scholar 

  • Olney, J. W. (1989). Excitatory amino acids and neuropsychiatric disorders. Biological Psychiatry, 26(5), 505–525.

    CAS  PubMed  Google Scholar 

  • Olney, J. W., Newcomer, J. W., & Farber, N. B. (1999). NMDA receptor hypofunction model of schizophrenia. Journal of Psychiatric Research, 33(6), 523–533.

    CAS  PubMed  Google Scholar 

  • Onn, S. P., Berger, T. W., Stricker, E. M., & Zigmond, M. J. (1986). Effects of intraventricular 6-hydroxydopamine on the dopaminergic innervation of striatum: Histochemical and neurochemical analysis. Brain Research, 376(1), 8–19.

    CAS  PubMed  Google Scholar 

  • Pan, H. S., Penney, J. B., & Young, A. B. (1985). Gamma-aminobutyric acid and benzodiazepine receptor changes induced by unilateral 6-hydroxydopamine lesions of the medial forebrain bundle. Journal of Neurochemistry, 45(5), 1396–1404.

    CAS  PubMed  Google Scholar 

  • Papadeas, S. T. (2006). Relationship of ERK1/2 phosphorylation to D 1 dopamine receptor activation, behavioral sensitization, and structural plasticity in the neonate 6-hydroxydopamine-lesioned rat. University of North Carolina at Chapel Hill, ProQuest/UMI.

    Google Scholar 

  • Papadeas, S. T., Blake, B. L., Knapp, D. J., & Breese, G. R. (2004). Sustained extracellular signal-regulated kinase 1/2 phosphorylation in neonate 6-hydroxydopamine-lesioned rats after repeated D1-dopamine receptor agonist administration: Implications for NMDA receptor involvement. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 24(26), 5863–5876.

    CAS  Google Scholar 

  • Papadeas, S. T., Halloran, C., McCown, T. J., Breese, G. R., & Blake, B. L. (2008). Changes in apical dendritic structure correlate with sustained ERK1/2 phosphorylation in medial prefrontal cortex of a rat model of dopamine D1 receptor agonist sensitization. The Journal of Comparative Neurology, 511(2), 271–285.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pappas, B. A., Gallivan, J. V., Dugas, T., Saari, M., & Ings, R. (1980). Intraventricular 6-hydroxydopamine in the newborn rat and locomotor responses to drugs in infancy: No support for the dopamine depletion model of minimal brain dysfunction. Psychopharmacology, 70(1), 41–46.

    CAS  PubMed  Google Scholar 

  • Pappas, B. A., Murtha, S. J., Park, G. A., Condon, K. T., Szirtes, R. M., Laventure, S. I., & Ally, A. (1992). Neonatal brain dopamine depletion and the cortical and behavioral consequences of enriched postweaning environment. Pharmacology, Biochemistry, and Behavior, 42(4), 741–748.

    CAS  PubMed  Google Scholar 

  • Paquette, M. A., Anderson, A. M., Lewis, J. R., Meshul, C. K., Johnson, S. W., & Paul Berger, S. (2010). MK-801 inhibits L-DOPA-induced abnormal involuntary movements only at doses that worsen parkinsonism. Neuropharmacology, 58(7), 1002–1008.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Parish, C. L., Stanic, D., Drago, J., Borrelli, E., Finkelstein, D. I., & Horne, M. K. (2002). Effects of long-term treatment with dopamine receptor agonists and antagonists on terminal arbor size. The European Journal of Neuroscience, 16(5), 787–794.

    CAS  PubMed  Google Scholar 

  • Parsons, L. H., Smith, A. D., & Justice, J. B., Jr. (1991). The in vivo microdialysis recovery of dopamine is altered independently of basal level by 6-hydroxydopamine lesions to the nucleus accumbens. Journal of Neuroscience Methods, 40(2–3), 139–147.

    CAS  PubMed  Google Scholar 

  • Patel, S., Roberts, J., Moorman, J., & Reavill, C. (1995). Localization of serotonin-4 receptors in the striatonigral pathway in rat brain. Neuroscience, 69(4), 1159–1167.

    CAS  PubMed  Google Scholar 

  • Paul, A., Wilson, S., Belham, C. M., Robinson, C. J., Scott, P. H., Gould, G. W., & Plevin, R. (1997). Stress-activated protein kinases: Activation, regulation and function. Cellular Signalling, 9(6), 403–410.

    CAS  PubMed  Google Scholar 

  • Pavon, N., Martin, A. B., Mendialdua, A., & Moratalla, R. (2006). ERK phosphorylation and FosB expression are associated with L-DOPA-induced dyskinesia in hemiparkinsonian mice. Biological Psychiatry, 59(1), 64–74.

    CAS  PubMed  Google Scholar 

  • Pearson, G., Robinson, F., Beers Gibson, T., Xu, B. E., Karandikar, M., Berman, K., & Cobb, M. H. (2001). Mitogen-activated protein (MAP) kinase pathways: Regulation and physiological functions. Endocrine Reviews, 22(2), 153–183.

    CAS  PubMed  Google Scholar 

  • Pei, L., Li, S., Wang, M., Diwan, M., Anisman, H., Fletcher, P. J., Nobrega, J. N., & Liu, F. (2010). Uncoupling the dopamine D1-D2 receptor complex exerts antidepressant-like effects. Nature Medicine, 16(12), 1393–1395.

    CAS  PubMed  Google Scholar 

  • Penit-Soria, J., Durand, C., Herve, D., & Besson, M. J. (1997). Morphological and biochemical adaptations to unilateral dopamine denervation of the neostriatum in newborn rats. Neuroscience, 77(3), 753–766.

    CAS  PubMed  Google Scholar 

  • Penny, G. R., Afsharpour, S., & Kitai, S. T. (1986). The glutamate decarboxylase-, leucine enkephalin-, methionine enkephalin- and substance P-immunoreactive neurons in the neostriatum of the rat and cat: Evidence for partial population overlap. Neuroscience, 17(4), 1011–1045.

    CAS  PubMed  Google Scholar 

  • Perese, D. A., Ulman, J., Viola, J., Ewing, S. E., & Bankiewicz, K. S. (1989). A 6-hydroxydopamine-induced selective parkinsonian rat model. Brain Research, 494(2), 285–293.

    CAS  PubMed  Google Scholar 

  • Perez-Navarro, E., Alberch, J., & Marsal, J. (1993). Postnatal development of functional dopamine, opioid and tachykinin receptors that regulate acetylcholine release from rat neostriatal slices. Effect of 6-hydroxydopamine lesion. International Journal of Developmental Neuroscience: The Official Journal of the International Society for Developmental Neuroscience, 11(6), 701–708.

    CAS  Google Scholar 

  • Perreault, M. L., Hasbi, A., O’Dowd, B. F., & George, S. R. (2011). The dopamine d1-d2 receptor heteromer in striatal medium spiny neurons: Evidence for a third distinct neuronal pathway in basal ganglia. Frontiers in Neuroanatomy, 5, 31.

    PubMed Central  PubMed  Google Scholar 

  • Pickel, V. M., Johnson, E., Carson, M., & Chan, J. (1992). Ultrastructure of spared dopamine terminals in caudate-putamen nuclei of adult rats neonatally treated with intranigral 6-hydroxydopamine. Brain Research. Developmental Brain Research, 70(1), 75–86.

    CAS  PubMed  Google Scholar 

  • Plech, A., Brus, R., Kalbfleisch, J. H., & Kostrzewa, R. M. (1995). Enhanced oral activity responses to intrastriatal SKF 38393 and m-CPP are attenuated by intrastriatal mianserin in neonatal 6-OHDA-lesioned rats. Psychopharmacology, 119(4), 466–473.

    CAS  PubMed  Google Scholar 

  • Porras, G., Di Matteo, V., Fracasso, C., Lucas, G., De Deurwaerdere, P., Caccia, S., Esposito, E., & Spampinato, U. (2002). 5-HT2A and 5-HT2C/2B receptor subtypes modulate dopamine release induced in vivo by amphetamine and morphine in both the rat nucleus accumbens and striatum. Neuropsychopharmacology: Official Publication of the American College of Neuropsychopharmacology, 26(3), 311–324.

    CAS  Google Scholar 

  • Porter, C. C., Totaro, J. A., & Stone, C. A. (1963). Effect of 6-hydroxydopamine and some other compounds on the concentration of norepinephrine in the hearts of mice. The Journal of Pharmacology and Experimental Therapeutics, 140, 308–316.

    CAS  PubMed  Google Scholar 

  • Potter, B. M., & Bruno, J. P. (1989). Food intake of rats depleted of dopamine as neonates is impaired by inhibition of catecholamine biosynthesis. Neuroscience Letters, 107(1–3), 295–300.

    CAS  PubMed  Google Scholar 

  • Pritzel, M., Huston, J. P., & Sarter, M. (1983). Behavioral and neuronal reorganization after unilateral substantia nigra lesions: Evidence for increased interhemispheric nigrostriatal projections. Neuroscience, 9(4), 879–888.

    CAS  PubMed  Google Scholar 

  • Przedborski, S., Levivier, M., Jiang, H., Ferreira, M., Jackson-Lewis, V., Donaldson, D., & Togasaki, D. M. (1995). Dose-dependent lesions of the dopaminergic nigrostriatal pathway induced by intrastriatal injection of 6-hydroxydopamine. Neuroscience, 67(3), 631–647.

    CAS  PubMed  Google Scholar 

  • Radja, F., Descarries, L., Dewar, K. M., & Reader, T. A. (1993a). Serotonin 5-HT1 and 5-HT2 receptors in adult rat brain after neonatal destruction of nigrostriatal dopamine neurons: A quantitative autoradiographic study. Brain Research, 606(2), 273–285.

    CAS  PubMed  Google Scholar 

  • Radja, F., el Mansari, M., Soghomonian, J. J., Dewar, K. M., Ferron, A., Reader, T. A., & Descarries, L. (1993b). Changes of D1 and D2 receptors in adult rat neostriatum after neonatal dopamine denervation: Quantitative data from ligand binding, in situ hybridization and iontophoresis. Neuroscience, 57(3), 635–648.

    CAS  PubMed  Google Scholar 

  • Rashid, A. J., So, C. H., Kong, M. M., Furtak, T., El-Ghundi, M., Cheng, R., O’Dowd, B. F., & George, S. R. (2007). D1-D2 dopamine receptor heterooligomers with unique pharmacology are coupled to rapid activation of Gq/11 in the striatum. Proceedings of the National Academy of Sciences of the United States of America, 104(2), 654–659.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Raskin, L. A., Shaywitz, B. A., Anderson, G. M., Cohen, D. J., Teicher, M. H., & Linakis, J. (1983). Differential effects of selective dopamine, norepinephrine or catecholamine depletion on activity and learning in the developing rat. Pharmacology, Biochemistry, and Behavior, 19(5), 743–749.

    CAS  PubMed  Google Scholar 

  • Reader, T. A., & Dewar, K. M. (1999). Effects of denervation and hyperinnervation on dopamine and serotonin systems in the rat neostriatum: Implications for human Parkinson’s disease. Neurochemistry International, 34(1), 1–21.

    CAS  PubMed  Google Scholar 

  • Reid, M. S., O’Connor, W. T., Herrera-Marschitz, M., & Ungerstedt, U. (1990). The effects of intranigral GABA and dynorphin A injections on striatal dopamine and GABA release: Evidence that dopamine provides inhibitory regulation of striatal GABA neurons via D2 receptors. Brain Research, 519(1–2), 255–260.

    CAS  PubMed  Google Scholar 

  • Reiner, A., & Anderson, K. D. (1990). The patterns of neurotransmitter and neuropeptide co-occurrence among striatal projection neurons: Conclusions based on recent findings. Brain Research. Brain Research Reviews, 15(3), 251–265.

    CAS  PubMed  Google Scholar 

  • Robertson, G. S., Herrera, D. G., Dragunow, M., & Robertson, H. A. (1989a). L-dopa activates c-fos in the striatum ipsilateral to a 6-hydroxydopamine lesion of the substantia nigra. European Journal of Pharmacology, 159(1), 99–100.

    CAS  PubMed  Google Scholar 

  • Robertson, H. A., Peterson, M. R., Murphy, K., & Robertson, G. S. (1989b). D1-dopamine receptor agonists selectively activate striatal c-fos independent of rotational behaviour. Brain Research, 503(2), 346–349.

    CAS  PubMed  Google Scholar 

  • Robinson, T. E. (1991). Controls for lesions of the nigrostriatal dopamine system. Science, 253(5017), 332.

    CAS  PubMed  Google Scholar 

  • Robinson, T. E., & Berridge, K. C. (2008). Review. The incentive sensitization theory of addiction: Some current issues. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 363(1507), 3137–3146.

    PubMed Central  PubMed  Google Scholar 

  • Robinson, T. E., & Whishaw, I. Q. (1988). Normalization of extracellular dopamine in striatum following recovery from a partial unilateral 6-OHDA lesion of the substantia nigra: A microdialysis study in freely moving rats. Brain Research, 450(1–2), 209–224.

    CAS  PubMed  Google Scholar 

  • Robinson, T. E., Castaneda, E., & Whishaw, I. Q. (1990). Compensatory changes in striatal dopamine neurons following recovery from injury induced by 6-OHDA or methamphetamine: A review of evidence from microdialysis studies. Canadian Journal of Psychology, 44(2), 253–275.

    CAS  PubMed  Google Scholar 

  • Robinson, T. E., Mocsary, Z., Camp, D. M., & Whishaw, I. Q. (1994). Time course of recovery of extracellular dopamine following partial damage to the nigrostriatal dopamine system. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 14(5 Pt 1), 2687–2696.

    CAS  Google Scholar 

  • Rogers, D. C., & Dunnett, S. B. (1989a). Hypersensitivity to alpha-methyl-p-tyrosine suggests that behavioural recovery of rats receiving neonatal 6-OHDA lesions is mediated by residual catecholamine neurones. Neuroscience Letters, 102(1), 108–113.

    CAS  PubMed  Google Scholar 

  • Rogers, D. C., & Dunnett, S. B. (1989b). Neonatal dopamine-rich grafts and 6-OHDA lesions independently provide partial protection from the adult nigrostriatal lesion syndrome. Behavioural Brain Research, 34(1–2), 131–146.

    CAS  PubMed  Google Scholar 

  • Samuel, D., Kumar, U., & Nieoullon, A. (1988). Gamma-Aminobutyric acid function in the rat striatum is under the double influence of nigrostriatal dopaminergic and thalamostriatal inputs: Two modes of regulation? Journal of Neurochemistry, 51(6), 1704–1710.

    CAS  PubMed  Google Scholar 

  • Saner, A., & Thoenen, H. (1971). Model experiments on the molecular mechanism of action of 6-hydroxydopamine. Molecular Pharmacology, 7(2), 147–154.

    CAS  PubMed  Google Scholar 

  • Santini, E., Valjent, E., Usiello, A., Carta, M., Borgkvist, A., Girault, J. A., Herve, D., Greengard, P., & Fisone, G. (2007). Critical involvement of cAMP/DARPP-32 and extracellular signal-regulated protein kinase signaling in L-DOPA-induced dyskinesia. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 27(26), 6995–7005.

    CAS  Google Scholar 

  • Sauer, H., & Oertel, W. H. (1994). Progressive degeneration of nigrostriatal dopamine neurons following intrastriatal terminal lesions with 6-hydroxydopamine: A combined retrograde tracing and immunocytochemical study in the rat. Neuroscience, 59(2), 401–415.

    CAS  PubMed  Google Scholar 

  • Savasta, M., Dubois, A., Feuerstein, C., Manier, M., & Scatton, B. (1987). Denervation supersensitivity of striatal D2 dopamine receptors is restricted to the ventro- and dorsolateral regions of the striatum. Neuroscience Letters, 74(2), 180–186.

    CAS  PubMed  Google Scholar 

  • Savasta, M., Dubois, A., Benavides, J., & Scatton, B. (1988). Different plasticity changes in D1 and D2 receptors in rat striatal subregions following impairment of dopaminergic transmission. Neuroscience Letters, 85(1), 119–124.

    CAS  PubMed  Google Scholar 

  • Savasta, M., Ruberte, E., Palacios, J. M., & Mengod, G. (1989). The colocalization of cholecystokinin and tyrosine hydroxylase mRNAs in mesencephalic dopaminergic neurons in the rat brain examined by in situ hybridization. Neuroscience, 29(2), 363–369.

    CAS  PubMed  Google Scholar 

  • Schallert, T., Petrie, B. F., & Wishaw, I. Q. (1989). Neonatal dopamine depletion: Spared and unspared sensorimotor and attentional disorders and effects of further depletion in adulthood. Psychobiology, 17, 386–396.

    CAS  Google Scholar 

  • Schiffmann, S. N., & Vanderhaeghen, J. J. (1992). Lesion of the nigrostriatal pathway induces cholecystokinin messenger RNA expression in the rat striatum. An in situ hybridization histochemistry study. Neuroscience, 50(3), 551–557.

    CAS  PubMed  Google Scholar 

  • Schober, A. (2004). Classic toxin-induced animal models of Parkinson’s disease: 6-OHDA and MPTP. Cell and Tissue Research, 318(1), 215–224.

    PubMed  Google Scholar 

  • Schuller, J. J., Billings, L. M., & Marshall, J. F. (1999). Dopaminergic modulation of pallidal preproenkephalin mRNA. Brain Research. Molecular Brain Research, 69(1), 149–153.

    CAS  PubMed  Google Scholar 

  • Schwarting, R. K., & Huston, J. P. (1996). Unilateral 6-hydroxydopamine lesions of meso-striatal dopamine neurons and their physiological sequelae. Progress in Neurobiology, 49(3), 215–266.

    CAS  PubMed  Google Scholar 

  • Schwarzkopf, S. B., Mitra, T., & Bruno, J. P. (1992). Sensory gating in rats depleted of dopamine as neonates: Potential relevance to findings in schizophrenic patients. Biological Psychiatry, 31(8), 759–773.

    CAS  PubMed  Google Scholar 

  • Schwarzkopf, S. B., Bruno, J. P., Mitra, T., & Ison, J. R. (1996). Effects of haloperidol and SCH 23390 on acoustic startle in animals depleted of dopamine as neonates: Implications for neuropsychiatric syndromes. Psychopharmacology, 123(3), 258–266.

    CAS  PubMed  Google Scholar 

  • Segal, D. S., & Mandell, A. J. (1974). Long-term administration of d-amphetamine: Progressive augmentation of motor activity and stereotypy. Pharmacology, Biochemistry, and Behavior, 2(2), 249–255.

    CAS  PubMed  Google Scholar 

  • Seger, R., & Krebs, E. G. (1995). The MAPK signaling cascade. FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology, 9(9), 726–735.

    CAS  Google Scholar 

  • Segovia, J., Tillakaratne, N. J., Whelan, K., Tobin, A. J., & Gale, K. (1990). Parallel increases in striatal glutamic acid decarboxylase activity and mRNA levels in rats with lesions of the nigrostriatal pathway. Brain Research, 529(1–2), 345–348.

    CAS  PubMed  Google Scholar 

  • Sgambato-Faure, V., Buggia, V., Gilbert, F., Levesque, D., Benabid, A. L., & Berger, F. (2005). Coordinated and spatial upregulation of arc in striatonigral neurons correlates with L-dopa-induced behavioral sensitization in dyskinetic rats. Journal of Neuropathology and Experimental Neurology, 64(11), 936–947.

    CAS  PubMed  Google Scholar 

  • Shaywitz, B. A., Klopper, J. H., Yager, R. D., & Gordon, J. W. (1976a). Paradoxical response to amphetamine in developing rats treated with 6-hydroxydopamine. Nature, 261(5556), 153–155.

    CAS  PubMed  Google Scholar 

  • Shaywitz, B. A., Yager, R. D., & Klopper, J. H. (1976b). Selective brain dopamine depletion in developing rats: An experimental model of minimal brain dysfunction. Science, 191(4224), 305–308.

    CAS  PubMed  Google Scholar 

  • Shinotoh, H., & Calne, D. B. (1995). The use of PET in Parkinson’s disease. Brain and Cognition, 28(3), 297–310.

    CAS  PubMed  Google Scholar 

  • Silbergeld, E. K., & Pfeiffer, R. F. (1977). Differential effects of three dopamine agonists: Apomorphine, bromocriptine and lergotrile. Journal of Neurochemistry, 28(6), 1323–1326.

    CAS  PubMed  Google Scholar 

  • Silverstein, F. S., Johnston, M. V., Hutchinson, R. J., & Edwards, N. L. (1985). Lesch-Nyhan syndrome: CSF neurotransmitter abnormalities. Neurology, 35(6), 907–911.

    CAS  PubMed  Google Scholar 

  • Simson, P. E., Johnson, K. B., Jurevics, H. A., Criswell, H. E., Napier, T. C., Duncan, G. E., Mueller, R. A., & Breese, G. R. (1992). Augmented sensitivity of D1-dopamine receptors in lateral but not medial striatum after 6-hydroxydopamine-induced lesions in the neonatal rat. The Journal of Pharmacology and Experimental Therapeutics, 263(3), 1454–1463.

    CAS  PubMed  Google Scholar 

  • Sivam, S. P. (1989). D1 dopamine receptor-mediated substance P depletion in the striatonigral neurons of rats subjected to neonatal dopaminergic denervation: Implications for self-injurious behavior. Brain Research, 500(1–2), 119–130.

    CAS  PubMed  Google Scholar 

  • Sivam, S. P. (1991). Dopamine dependent decrease in enkephalin and substance P levels in basal ganglia regions of postmortem parkinsonian brains. Neuropeptides, 18(4), 201–207.

    CAS  PubMed  Google Scholar 

  • Sivam, S. P., & Cox, J. (2006). Postnatal administration of D1 dopamine agonist reverses neonatal dopaminergic lesion-induced changes in striatal enkephalin and substance P systems. Brain Research, 1073–1074, 159–163.

    PubMed  Google Scholar 

  • Sivam, S. P., & Krause, J. E. (1990). The adaptation of enkephalin, tachykinin and monoamine neurons of the basal ganglia following neonatal dopaminergic denervation is dependent on the extent of dopamine depletion. Brain Research, 536(1–2), 169–175.

    CAS  PubMed  Google Scholar 

  • Sivam, S. P., Breese, G. R., Napier, T. C., Mueller, R. A., & Hong, J. S. (1986). Dopaminergic regulation of proenkephalin-A gene expression in the basal ganglia. NIDA Research Monograph, 75, 389–392.

    CAS  PubMed  Google Scholar 

  • Sivam, S. P., Breese, G. R., Krause, J. E., Napier, T. C., Mueller, R. A., & Hong, J. S. (1987). Neonatal and adult 6-hydroxydopamine-induced lesions differentially alter tachykinin and enkephalin gene expression. Journal of Neurochemistry, 49(5), 1623–1633.

    CAS  PubMed  Google Scholar 

  • Sivam, S. P., Krause, J. E., Breese, G. R., & Hong, J. S. (1991). Dopamine-dependent postnatal development of enkephalin and tachykinin neurons of rat basal ganglia. Journal of Neurochemistry, 56(5), 1499–1508.

    CAS  PubMed  Google Scholar 

  • Smith, R. D., Cooper, B. R., & Breese, G. R. (1973). Growth and behavioral changes in developing rats treated intracisternally with 6-hydroxydopamine: Evidence for involvement of brain dopamine. The Journal of Pharmacology and Experimental Therapeutics, 185(3), 609–619.

    CAS  PubMed  Google Scholar 

  • Snyder, A. M., Stricker, E. M., & Zigmond, M. J. (1985). Stress-induced neurological impairments in an animal model of parkinsonism. Annals of Neurology, 18(5), 544–551.

    CAS  PubMed  Google Scholar 

  • Snyder, A. M., Zigmond, M. J., & Lund, R. D. (1986). Sprouting of serotoninergic afferents into striatum after dopamine-depleting lesions in infant rats: A retrograde transport and immunocytochemical study. The Journal of Comparative Neurology, 245(2), 274–281.

    CAS  PubMed  Google Scholar 

  • Snyder, G. L., Keller, R. W., Jr., & Zigmond, M. J. (1990). Dopamine efflux from striatal slices after intracerebral 6-hydroxydopamine: Evidence for compensatory hyperactivity of residual terminals. The Journal of Pharmacology and Experimental Therapeutics, 253(2), 867–876.

    CAS  PubMed  Google Scholar 

  • Snyder-Keller, A. M. (1991). Development of striatal compartmentalization following pre- or postnatal dopamine depletion. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 11(3), 810–821.

    CAS  Google Scholar 

  • Snyder-Keller, A. M., Carder, R. K., & Lund, R. D. (1989). Development of dopamine innervation and turning behavior in dopamine-depleted infant rats receiving unilateral nigral transplants. Neuroscience, 30(3), 779–794.

    CAS  PubMed  Google Scholar 

  • Soghomonian, J. J. (1993). Effects of neonatal 6-hydroxydopamine injections on glutamate decarboxylase, preproenkephalin and dopamine D2 receptor mRNAs in the adult rat striatum. Brain Research, 621(2), 249–259.

    CAS  PubMed  Google Scholar 

  • Soghomonian, J. J. (1994). Differential regulation of glutamate decarboxylase and preproenkephalin mRNA levels in the rat striatum. Brain Research, 640(1–2), 146–154.

    CAS  PubMed  Google Scholar 

  • Spirduso, W. W., Gilliam, P. E., Schallert, T., Upchurch, M., Vaughn, D. M., & Wilcox, R. E. (1985). Reactive capacity: A sensitive behavioral marker of movement initiation and nigrostriatal dopamine function. Brain Research, 335(1), 45–54.

    CAS  PubMed  Google Scholar 

  • Spooren, W. P., Gasparini, F., Bergmann, R., & Kuhn, R. (2000). Effects of the prototypical mGlu(5) receptor antagonist 2-methyl-6-(phenylethynyl)-pyridine on rotarod, locomotor activity and rotational responses in unilateral 6-OHDA-lesioned rats. European Journal of Pharmacology, 406(3), 403–410.

    CAS  PubMed  Google Scholar 

  • Stachowiak, M. K., Bruno, J. P., Snyder, A. M., Stricker, E. M., & Zigmond, M. J. (1984). Apparent sprouting of striatal serotonergic terminals after dopamine-depleting brain lesions in neonatal rats. Brain Research, 291(1), 164–167.

    CAS  PubMed  Google Scholar 

  • Stachowiak, M. K., Keller, R. W., Jr., Stricker, E. M., & Zigmond, M. J. (1987). Increased dopamine efflux from striatal slices during development and after nigrostriatal bundle damage. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 7(6), 1648–1654.

    CAS  Google Scholar 

  • Staunton, D. A., Wolfe, B. B., Groves, P. M., & Molinoff, P. B. (1981). Dopamine receptor changes following destruction of the nigrostriatal pathway: Lack of a relationship to rotational behavior. Brain Research, 211(2), 315–327.

    CAS  PubMed  Google Scholar 

  • Steece-Collier, K., Collier, T. J., Danielson, P. D., Kurlan, R., Yurek, D. M., & Sladek, J. R., Jr. (2003). Embryonic mesencephalic grafts increase levodopa-induced forelimb hyperkinesia in parkinsonian rats. Movement Disorders: Official Journal of the Movement Disorder Society, 18(12), 1442–1454.

    Google Scholar 

  • Stellar, J. R., Waraczynski, M., & Bruno, J. P. (1988). Neonatal dopamine depletions spare lateral hypothalamic stimulation reward in adult rats. Pharmacology, Biochemistry, and Behavior, 30(2), 365–370.

    CAS  PubMed  Google Scholar 

  • Stout, J. T. C., & Caskey, C. T. (1989). Hypoxanthine phosphoribosyltransferase deficiency: The Lesch-Nyhan syndrome and gouty arthritis. In C. R. Scriver, A. L. Beaudet, W. S. Sly, & D. Valle (Eds.), The metabolic basis of inherited disease (Vol. 1, pp. 1007–1028). New York: McGraw-Hill.

    Google Scholar 

  • Strange, P. G. (1993). New insights into dopamine receptors in the central nervous system. Neurochemistry International, 22(3), 223–236.

    CAS  PubMed  Google Scholar 

  • Stricker, E. M., & Zigmond, M. J. (1974). Effects on homeostasis of intraventricular injections of 6-hydroxydopamine in rats. Journal of Comparative and Physiological Psychology, 86(6), 973–994.

    CAS  PubMed  Google Scholar 

  • Stricker, E. M., & Zigmond, M. J. (1984). Brain catecholamines and the central control of food intake. International Journal of Obesity, 8(Suppl 1), 39–50.

    CAS  PubMed  Google Scholar 

  • Stromberg, I., Adams, C., Bygdeman, M., Hoffer, B., Boyson, S., & Humpel, C. (1995). Long-term effects of human-to-rat mesencephalic xenografts on rotational behavior, striatal dopamine receptor binding, and mRNA levels. Brain Research Bulletin, 38(3), 221–233.

    CAS  PubMed  Google Scholar 

  • Sweatt, J. D. (2001). The neuronal MAP kinase cascade: A biochemical signal integration system subserving synaptic plasticity and memory. Journal of Neurochemistry, 76(1), 1–10.

    CAS  PubMed  Google Scholar 

  • Takeichi, T., Kurumiya, S., Umemoto, M., & Olds, M. E. (1986). Roles of catecholamine terminals and intrinsic neurons of the ventral tegmentum in self-stimulation investigated in neonatally dopamine-depleted rats. Pharmacology, Biochemistry, and Behavior, 24(4), 1101–1109.

    CAS  PubMed  Google Scholar 

  • Tanaka, Y., Niijima, K., Mizuno, Y., & Yoshida, M. (1986). Changes in gamma-aminobutyrate, glutamate, aspartate, glycine, and taurine contents in the striatum after unilateral nigrostriatal lesions in rats. Experimental Neurology, 91(2), 259–268.

    CAS  PubMed  Google Scholar 

  • Tang, F., Costa, E., & Schwartz, J. P. (1983). Increase of proenkephalin mRNA and enkephalin content of rat striatum after daily injection of haloperidol for 2 to 3 weeks. Proceedings of the National Academy of Sciences of the United States of America, 80(12), 3841–3844.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Taylor, M. D., De Ceballos, M. L., Rose, S., Jenner, P., & Marsden, C. D. (1992). Effects of a unilateral 6-hydroxydopamine lesion and prolonged L-3,4-dihydroxyphenylalanine treatment on peptidergic systems in rat basal ganglia. European Journal of Pharmacology, 219(2), 183–192.

    CAS  PubMed  Google Scholar 

  • Thal, L. J., Sharpless, N. S., Hirschhorn, I. D., Horowitz, S. G., & Makman, M. H. (1983). Striatal met-enkephalin concentration increases following nigrostriatal denervation. Biochemical Pharmacology, 32(22), 3297–3301.

    CAS  PubMed  Google Scholar 

  • Thoenen, H., & Tranzer, J. P. (1968). Chemical sympathectomy by selective destruction of adrenergic nerve endings with 6-hydroxydopamine. Naunyn-Schmiedebergs Archiv für Experimentelle Pathologie und Pharmakologie, 261(3), 271–288.

    CAS  PubMed  Google Scholar 

  • Tillerson, J. L., Cohen, A. D., Philhower, J., Miller, G. W., Zigmond, M. J., & Schallert, T. (2001). Forced limb-use effects on the behavioral and neurochemical effects of 6-hydroxydopamine. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 21(12), 4427–4435.

    CAS  Google Scholar 

  • Tossman, U., Segovia, J., & Ungerstedt, U. (1986). Extracellular levels of amino acids in striatum and globus pallidus of 6-hydroxydopamine-lesioned rats measured with microdialysis. Acta Physiologica Scandinavica, 127(4), 547–551.

    CAS  PubMed  Google Scholar 

  • Touchet, N., & Bennett, J. P., Jr. (1989). The metabolism of systemically-administered L-dihydroxyphenylalanine, by intact and dopamine-denervated striata, as revealed by brain microdialysis. Neuropharmacology, 28(11), 1217–1222.

    CAS  PubMed  Google Scholar 

  • Towle, A. C., Criswell, H. E., Maynard, E. H., Lauder, J. M., Joh, T. H., Mueller, R. A., & Breese, G. R. (1989). Serotonergic innervation of the rat caudate following a neonatal 6-hydroxydopamine lesion: An anatomical, biochemical and pharmacological study. Pharmacology, Biochemistry, and Behavior, 34(2), 367–374.

    CAS  PubMed  Google Scholar 

  • Tripanichkul, W., Stanic, D., Drago, J., Finkelstein, D. I., & Horne, M. K. (2003). D2 Dopamine receptor blockade results in sprouting of DA axons in the intact animal but prevents sprouting following nigral lesions. The European Journal of Neuroscience, 17(5), 1033–1045.

    CAS  PubMed  Google Scholar 

  • Umbriaco, D., Garcia, S., Beaulieu, C., & Descarries, L. (1995). Relational features of acetylcholine, noradrenaline, serotonin and GABA axon terminals in the stratum radiatum of adult rat hippocampus (CA1). Hippocampus, 5(6), 605–620.

    CAS  PubMed  Google Scholar 

  • Ungerstedt, U. (1968). 6-Hydroxy-dopamine induced degeneration of central monoamine neurons. European Journal of Pharmacology, 5(1), 107–110.

    CAS  PubMed  Google Scholar 

  • Ungerstedt, U. (1971a). Adipsia and aphagia after 6-hydroxydopamine induced degeneration of the nigro-striatal dopamine system. Acta Physiologica Scandinavica. Supplementum, 367, 95–122.

    CAS  PubMed  Google Scholar 

  • Ungerstedt, U. (1971b). Postsynaptic supersensitivity after 6-hydroxy-dopamine induced degeneration of the nigro-striatal dopamine system. Acta Physiologica Scandinavica. Supplementum, 367, 69–93.

    CAS  PubMed  Google Scholar 

  • Ungerstedt, U. (1971c). Stereotaxic mapping of the monoamine pathways in the rat brain. Acta Physiologica Scandinavica. Supplementum, 367, 1–48.

    CAS  PubMed  Google Scholar 

  • Ungerstedt, U. (1971d). Striatal dopamine release after amphetamine or nerve degeneration revealed by rotational behaviour. Acta Physiologica Scandinavica. Supplementum, 367, 49–68.

    CAS  PubMed  Google Scholar 

  • Ungerstedt, U. (1971e). Use of intracerebral injections of 6-hydroxydopamine as a tool for morphological and functional studies on central catecholamine neurons. In T. Malmfors & H. Thonen (Eds.), 6-hydroxydopamine and catecholamine neurons (pp. 315–332). Amsterdam: North Holland.

    Google Scholar 

  • Ungerstedt, U., Ljungberg, T., & Steg, G. (1974). Behavioral, physiological, and neurochemical changes after 6-hydroxydopamine-induced degeneration of the nigro-striatal dopamine neurons. Advances in Neurology, 5, 421–426.

    CAS  PubMed  Google Scholar 

  • Uretsky, N. J., & Iversen, L. L. (1970). Effects of 6-hydroxydopamine on catecholamine containing neurones in the rat brain. Journal of Neurochemistry, 17(2), 269–278.

    CAS  PubMed  Google Scholar 

  • Usiello, A., Baik, J. H., Rouge-Pont, F., Picetti, R., Dierich, A., LeMeur, M., Piazza, P. V., & Borrelli, E. (2000). Distinct functions of the two isoforms of dopamine D2 receptors. Nature, 408(6809), 199–203.

    CAS  PubMed  Google Scholar 

  • Valjent, E., Corvol, J. C., Pages, C., Besson, M. J., Maldonado, R., & Caboche, J. (2000). Involvement of the extracellular signal-regulated kinase cascade for cocaine-rewarding properties. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 20(23), 8701–8709.

    CAS  Google Scholar 

  • van der Heyden, J. A., Venema, K., & Korf, J. (1980). In vivo release of endogenous GABA from rat striatum: inhibition by dopamine. Journal of Neurochemistry, 34(5), 1338–1341.

    PubMed  Google Scholar 

  • van Horne, C., Hoffer, B. J., Stromberg, I., & Gerhardt, G. A. (1992). Clearance and diffusion of locally applied dopamine in normal and 6-hydroxydopamine-lesioned rat striatum. The Journal of Pharmacology and Experimental Therapeutics, 263(3), 1285–1292.

    PubMed  Google Scholar 

  • Vankova, M., Arluison, M., Boyer, P. A., Bourgoin, S., & Quignon, M. (1991). Enkephalin-containing nerve cell bodies in the substantia nigra of the rat: Demonstration by immunohistochemistry and in situ hybridization. Brain Research Bulletin, 27(1), 19–27.

    CAS  PubMed  Google Scholar 

  • Vernier, P., Julien, J. F., Rataboul, P., Fourrier, O., Feuerstein, C., & Mallet, J. (1988). Similar time course changes in striatal levels of glutamic acid decarboxylase and proenkephalin mRNA following dopaminergic deafferentation in the rat. Journal of Neurochemistry, 51(5), 1375–1380.

    CAS  PubMed  Google Scholar 

  • Voorn, P., Roest, G., & Groenewegen, H. J. (1987). Increase of enkephalin and decrease of substance P immunoreactivity in the dorsal and ventral striatum of the rat after midbrain 6-hydroxydopamine lesions. Brain Research, 412(2), 391–396.

    CAS  PubMed  Google Scholar 

  • Voorn, P., Docter, G. J., Jongen-Relo, A. L., & Jonker, A. J. (1994). Rostrocaudal subregional differences in the response of enkephalin, dynorphin and substance P synthesis in rat nucleus accumbens to dopamine depletion. The European Journal of Neuroscience, 6(3), 486–496.

    CAS  PubMed  Google Scholar 

  • Vossler, M. R., Yao, H., York, R. D., Pan, M. G., Rim, C. S., & Stork, P. J. (1997). cAMP activates MAP kinase and Elk-1 through a B-Raf- and Rap1-dependent pathway. Cell, 89(1), 73–82.

    CAS  PubMed  Google Scholar 

  • Walker, P. D., Riley, L. A., Hart, R. P., & Jonakait, G. M. (1991). Serotonin regulation of neostriatal tachykinins following neonatal 6-hydroxydopamine lesions. Brain Research, 557(1–2), 31–36.

    CAS  PubMed  Google Scholar 

  • Walters, J. R., Bergstrom, D. A., Carlson, J. H., Chase, T. N., & Braun, A. R. (1987). D1 dopamine receptor activation required for postsynaptic expression of D2 agonist effects. Science, 236(4802), 719–722.

    CAS  PubMed  Google Scholar 

  • Wang, Y., Xu, R., Sasaoka, T., Tonegawa, S., Kung, M. P., & Sankoorikal, E. B. (2000). Dopamine D2 long receptor-deficient mice display alterations in striatum-dependent functions. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 20(22), 8305–8314.

    CAS  Google Scholar 

  • Wang, H. B., Laverghetta, A. V., Foehring, R., Deng, Y. P., Sun, Z., Yamamoto, K., Lei, W. L., Jiao, Y., & Reiner, A. (2006). Single-cell RT-PCR, in situ hybridization histochemical, and immunohistochemical studies of substance P and enkephalin co-occurrence in striatal projection neurons in rats. Journal of Chemical Neuroanatomy, 31(3), 178–199.

    CAS  PubMed  Google Scholar 

  • Wang, H. B., Deng, Y. P., & Reiner, A. (2007). In situ hybridization histochemical and immunohistochemical evidence that striatal projection neurons co-containing substance P and enkephalin are overrepresented in the striosomal compartment of striatum in rats. Neuroscience Letters, 425(3), 195–199.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Watts, R. W., Spellacy, E., Gibbs, D. A., Allsop, J., McKeran, R. O., & Slavin, G. E. (1982). Clinical, post-mortem, biochemical and therapeutic observations on the Lesch-Nyhan syndrome with particular reference to the Neurological manifestations. The Quarterly Journal of Medicine, 51(201), 43–78.

    CAS  PubMed  Google Scholar 

  • Weihmuller, F. B., & Bruno, J. P. (1989a). Age-dependent plasticity in the dopaminergic control of sensorimotor development. Behavioural Brain Research, 35(2), 95–109.

    CAS  PubMed  Google Scholar 

  • Weihmuller, F. B., & Bruno, J. P. (1989b). Drinking behavior and motor function in rat pups depleted of brain dopamine during development. Developmental Psychobiology, 22(2), 101–113.

    CAS  PubMed  Google Scholar 

  • Westin, J. E., Vercammen, L., Strome, E. M., Konradi, C., & Cenci, M. A. (2007). Spatiotemporal pattern of striatal ERK1/2 phosphorylation in a rat model of L-DOPA-induced dyskinesia and the role of dopamine D1 receptors. Biological Psychiatry, 62(7), 800–810.

    CAS  PubMed  Google Scholar 

  • Whishaw, I. Q., Funk, D. R., Hawryluk, S. J., & Karbashewski, E. D. (1987). Absence of sparing of spatial navigation, skilled forelimb and tongue use and limb posture in the rat after neonatal dopamine depletion. Physiology and Behavior, 40(2), 247–253.

    CAS  PubMed  Google Scholar 

  • Winkler, C., Bentlage, C., Nikkhah, G., Samii, M., & Bjorklund, A. (1999). Intranigral transplants of GABA-rich striatal tissue induce behavioral recovery in the rat Parkinson model and promote the effects obtained by intrastriatal dopaminergic transplants. Experimental Neurology, 155(2), 165–186.

    CAS  PubMed  Google Scholar 

  • Wolf, M. E. (1998). The role of excitatory amino acids in behavioral sensitization to psychomotor stimulants. Progress in Neurobiology, 54(6), 679–720.

    CAS  PubMed  Google Scholar 

  • Wolf, M. E., Zigmond, M. J., & Kapatos, G. (1989). Tyrosine hydroxylase content of residual striatal dopamine nerve terminals following 6-hydroxydopamine administration: A flow cytometric study. Journal of Neurochemistry, 53(3), 879–885.

    CAS  PubMed  Google Scholar 

  • Wong, D. F., Harris, J. C., Naidu, S., Yokoi, F., Marenco, S., Dannals, R. F., Ravert, H. T., Yaster, M., Evans, A., Rousset, O., Bryan, R. N., Gjedde, A., Kuhar, M. J., & Breese, G. R. (1996). Dopamine transporters are markedly reduced in Lesch-Nyhan disease in vivo. Proceedings of the National Academy of Sciences of the United States of America, 93(11), 5539–5543.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Woodlee, M. T., Kane, J. R., Chang, J., Cormack, L. K., & Schallert, T. (2008). Enhanced function in the good forelimb of hemi-parkinson rats: Compensatory adaptation for contralateral postural instability? Experimental Neurology, 211(2), 511–517.

    PubMed  Google Scholar 

  • Yao, H., York, R. D., Misra-Press, A., Carr, D. W., & Stork, P. J. (1998). The cyclic adenosine monophosphate-dependent protein kinase (PKA) is required for the sustained activation of mitogen-activated kinases and gene expression by nerve growth factor. The Journal of Biological Chemistry, 273(14), 8240–8247.

    CAS  PubMed  Google Scholar 

  • York, R. D., Yao, H., Dillon, T., Ellig, C. L., Eckert, S. P., McCleskey, E. W., & Stork, P. J. (1998). Rap1 mediates sustained MAP kinase activation induced by nerve growth factor. Nature, 392(6676), 622–626.

    CAS  PubMed  Google Scholar 

  • Yoshida, H., Ohno, M., & Watanabe, S. (1995). Roles of dopamine D1 receptors in striatal fos protein induction associated with methamphetamine behavioral sensitization in rats. Brain Research Bulletin, 38(4), 393–397.

    CAS  PubMed  Google Scholar 

  • Young, W. S., 3rd, Bonner, T. I., & Brann, M. R. (1986). Mesencephalic dopamine neurons regulate the expression of neuropeptide mRNAs in the rat forebrain. Proceedings of the National Academy of Sciences of the United States of America, 83(24), 9827–9831.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zeng, B. Y., Jolkkonen, J., Jenner, P., & Marsden, C. D. (1995). Chronic L-DOPA treatment differentially regulates gene expression of glutamate decarboxylase, preproenkephalin and preprotachykinin in the striatum of 6-hydroxydopamine-lesioned rat. Neuroscience, 66(1), 19–28.

    CAS  PubMed  Google Scholar 

  • Zhang, K., Tarazi, F. I., & Baldessarini, R. J. (2001). Role of dopamine D(4) receptors in motor hyperactivity induced by neonatal 6-hydroxydopamine lesions in rats. Neuropsychopharmacology: Official Publication of the American College of Neuropsychopharmacology, 25(5), 624–632.

    CAS  Google Scholar 

  • Zhang, K., Davids, E., Tarazi, F. I., & Baldessarini, R. J. (2002a). Effects of dopamine D4 receptor-selective antagonists on motor hyperactivity in rats with neonatal 6-hydroxydopamine lesions. Psychopharmacology, 161(1), 100–106.

    CAS  PubMed  Google Scholar 

  • Zhang, K., Tarazi, F. I., Davids, E., & Baldessarini, R. J. (2002b). Plasticity of dopamine D4 receptors in rat forebrain: Temporal association with motor hyperactivity following neonatal 6-hydroxydopamine lesioning. Neuropsychopharmacology: Official Publication of the American College of Neuropsychopharmacology, 26(5), 625–633.

    CAS  Google Scholar 

  • Zhang, X., Andren, P. E., & Svenningsson, P. (2007). Changes on 5-HT2 receptor mRNAs in striatum and subthalamic nucleus in Parkinson’s disease model. Physiology and Behavior, 92(1–2), 29–33.

    CAS  PubMed  Google Scholar 

  • Zhou, F. C., Bledsoe, S., & Murphy, J. (1991). Serotonergic sprouting is induced by dopamine-lesion in substantia nigra of adult rat brain. Brain Research, 556(1), 108–116.

    CAS  PubMed  Google Scholar 

  • Zigmond, M. J. (1997). Do compensatory processes underlie the preclinical phase of neurodegenerative disease? Insights from an animal model of parkinsonism. Neurobiology of Disease, 4(3–4), 247–253.

    CAS  PubMed  Google Scholar 

  • Zigmond, M. J., & Stricker, E. M. (1972). Deficits in feeding behavior after intraventricular injection of 6-hydroxydopamine in rats. Science, 177(4055), 1211–1214.

    CAS  PubMed  Google Scholar 

  • Zigmond, M. J., & Stricker, E. M. (1973). Recovery of feeding and drinking by rats after intraventricular 6-hydroxydopamine or lateral hypothalamic lesions. Science, 182(4113), 717–720.

    CAS  PubMed  Google Scholar 

  • Zigmond, M. J., & Stricker, E. M. (1980). Supersensitivity after intraventricular 6-hydroxydopamine: Relation to dopamine depletion. Experientia, 36(4), 436–438.

    CAS  PubMed  Google Scholar 

  • Zigmond, M. J., & Stricker, E. M. (1984). Parkinson’s disease: Studies with an animal model. Life Sciences, 35(1), 5–18.

    CAS  PubMed  Google Scholar 

  • Zigmond, M. J., Acheson, A. L., Stachowiak, M. K., & Stricker, E. M. (1984). Neurochemical compensation after nigrostriatal bundle injury in an animal model of preclinical parkinsonism. Archives of Neurology, 41(8), 856–861.

    CAS  PubMed  Google Scholar 

  • Zis, A. P., Fibiger, H. C., & Phillips, A. G. (1974). Reversal by L-dopa of impaired learning due to destruction of the dopaminergic nigro-neostriatal projection. Science, 185(4155), 960–962.

    CAS  PubMed  Google Scholar 

  • Zuch, C. L., Nordstroem, V. K., Briedrick, L. A., Hoernig, G. R., Granholm, A. C., & Bickford, P. C. (2000). Time course of degenerative alterations in nigral dopaminergic neurons following a 6-hydroxydopamine lesion. The Journal of Comparative Neurology, 427(3), 440–454.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sophia T. Papadeas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Papadeas, S.T., Breese, G.R. (2014). 6-Hydroxydopamine Lesioning of Dopamine Neurons in Neonatal and Adult Rats Induces Age-Dependent Consequences. In: Kostrzewa, R. (eds) Handbook of Neurotoxicity. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5836-4_59

Download citation

Publish with us

Policies and ethics