Skip to main content

Some Key Enzymes Used in Cloning

  • Living reference work entry
  • First Online:
Molecular Life Sciences
  • 426 Accesses

Synopsis

A large number of different enzymes are used in DNA cloning procedures. DNA ligase is used to join two DNA molecules covalently, the key step in constructing a recombinant plasmid from a cloning vector and a DNA insert. The ends of DNA molecules can be modified to allow or prevent ligation by using the enzymes polynucleotide kinase or alkaline phosphatase. Enzymes that catalyze DNA synthesis, including DNA polymerases, reverse transcriptase, and terminal deoxynucleotidyl transferase, find application in many ways in cloning procedures, including to modify DNA ends to control ligation, in the polymerase chain reaction, in DNA sequencing, to produce DNA copies of RNA molecules, and other applications. A variety of nucleases are available that can be used to remove unwanted DNA, to modify DNA ends, and to delete larger portions of a DNA molecule.

Introduction

The isolation, modification, and joining of specific DNA fragments to produce recombinant products are essential steps in...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Berg P, Mertz JE (2010) Personal reflections on the origins and emergence of recombinant DNA technology. Genetics 184:9–17

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Blanco L, Bernad A, Lazaro JM, Martin G, Garmendia C, Salas M (1989) Highly efficient DNA synthesis by the phage phi 29 DNA polymerase. Symmetrical mode of DNA replication. J Biol Chem 264:8935–8940

    CAS  PubMed  Google Scholar 

  • Chen CY (2014) DNA polymerases drive DNA sequencing-by-synthesis technologies: both past and present. Front Microbiol 5:305

    PubMed Central  PubMed  Google Scholar 

  • Cobianchi F, Wilson SH (1987) Enzymes for modifying and labeling DNA and RNA. Methods Enzymol 152:94–110

    Article  CAS  PubMed  Google Scholar 

  • Dean FB, Hosono S, Fang L, Wu X, Faruqi AF, Bray-Ward P, Sun Z, Zong Q, Du Y, Du J et al (2002) Comprehensive human genome amplification using multiple displacement amplification. Proc Natl Acad Sci U S A 99:5261–5266

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dickson K, Burns C, Richardson J (2000) Determination of the free-energy change for repair of a DNA phosphodiester bond. J Biol Chem 275:15828–15831

    Article  CAS  PubMed  Google Scholar 

  • Dillingham MS, Kowalczykowski SC (2008) RecBCD enzyme and the repair of double-stranded DNA breaks. Microbiol. Mol. Biol. Rev. 72:642–671

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dugaiczyk A, Boyer HW, Goodman HM (1975) Ligation of EcoRI endonuclease-generated DNA fragments into linear and circular structures. J Mol Biol 96:171–184

    Article  CAS  PubMed  Google Scholar 

  • Kornberg A, Baker TA (1992) DNA replication, 2nd edn. W. H. Freeman, New York

    Google Scholar 

  • Kunkel T (2004) DNA replication fidelity. J Biol Chem 279:16895–16898

    Article  CAS  PubMed  Google Scholar 

  • Langhorst BW, Jack WE, Reha-Krantz L, Nichols NM (2012) Polbase: a repository of biochemical, genetic and structural information about DNA polymerases. Nucleic Acids Res 40:D381–D387

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Linn SM, Lloyd RS, Roberts RJ (eds) (1993) Nucleases. Cold Spring Harbor Laboratory Press, Plainview, NY

    Google Scholar 

  • Motea EA, Berdis AJ (2010) Terminal deoxynucleotidyl transferase: the story of a misguided DNA polymerase. Biochim Biophys Acta 1804:1151–1166

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mullis KB, Faloona FA (1987) Specific synthesis of DNA in vitro via a polymerase-catalyzed chain reaction. Methods Enzymol 155:335–350

    Article  CAS  PubMed  Google Scholar 

  • Nichols NM (2011) Endonucleases. In Current Protocols in Molecular Biology. Wiley

    Google Scholar 

  • Nilsen I, Øverbø K, Olsen R (2001) Thermolabile alkaline phosphatase from Northern shrimp (Pandalus borealis): protein and cDNA sequence analyses. Comp Biochem Physiol B Biochem Mol Biol 129:853–861

    Article  CAS  PubMed  Google Scholar 

  • Patel P, Suzuki M, Adman E, Shinkai A, Loeb L (2001) Prokaryotic DNA polymerase I: evolution, structure, and “base flipping” mechanism for nucleotide selection. J Mol Biol 308:823–837

    Article  CAS  PubMed  Google Scholar 

  • Pavlov AR, Pavlova NV, Kozyavkin SA, Slesarev AI (2004) Recent developments in the optimization of thermostable DNA polymerases for efficient applications. Trends Biotechnol 22:253–260

    Article  CAS  PubMed  Google Scholar 

  • Revie D, Smith DW, Yee TW (1988) Kinetic analysis for optimization of DNA ligation reactions. Nucleic Acids Res 16:10301–10321

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rina M, Pozidis C, Mavromatis K, Tzanodaskalaki M, Kokkinidis M, Bouriotis V (2000) Alkaline phosphatase from the Antarctic strain TAB5. Properties and psychrophilic adaptations. Eur J Biochem 267:1230–1238

    Article  CAS  PubMed  Google Scholar 

  • Saiki RK, Scharf S, Faloona F, Mullis KB, Horn GT, Erlich HA, Arnheim N (1985) Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science 230:1350–1354

    Article  CAS  PubMed  Google Scholar 

  • Saiki RK, Gelfand DH, Stoffel S, Scharf SJ, Higuchi R, Horn GT, Mullis KB, Erlich HA (1988) Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239:487–491

    Article  CAS  PubMed  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Shore D, Langowski J, Baldwin RL (1981) DNA flexibility studied by covalent closure of short fragments into circles. Proc Natl Acad Sci U S A 78:4833–4837

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Telesnitsky A, Goff SP (1997) Reverse transcriptase and the generation of retroviral DNA. In: Coffin JM, Hughes SH, Varmus HE (eds) Retroviruses. Cold Spring Harbor Laboratory Press, Plainview, pp 121–160

    Google Scholar 

  • Tomkinson AE, Vijayakumar S, Pascal JM, Ellenberger T (2006) DNA ligases: structure, reaction mechanism, and function. Chem Rev 106:687–699

    Article  CAS  PubMed  Google Scholar 

  • Wang LK, Lima CD, Shuman S (2002) Structure and mechanism of T4 polynucleotide kinase: an RNA repair enzyme. Embo J 21:3873–3880

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wood Z, Sabatini R, Hajduk S (2004) RNA ligase: picking up the pieces. Mol Cell 13:455–456

    Article  CAS  PubMed  Google Scholar 

  • Yang W (2011) Nucleases: diversity of structure, function and mechanism. Q Rev Biophys 44:1–93

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Douglas Julin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Julin, D. (2014). Some Key Enzymes Used in Cloning. In: Wells, R., Bond, J., Klinman, J., Masters, B., Bell, E. (eds) Molecular Life Sciences. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6436-5_89-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-6436-5_89-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-6436-5

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics