Skip to main content

Optic Flow Processing

  • Living reference work entry
  • First Online:
Encyclopedia of Computational Neuroscience
  • 312 Accesses

Synonyms

Directional motion; Matched filters; Motion parallax; Optic flow fields; Optical flow; Relative motion; Velocity vector fields

Definition

Optic flow describes the geometrical projection of relative motion between the visual environment and a moving optical system. It is commonly formalized by a distribution of local velocity vectors, observed at many different positions within the optical system’s visual field. Together, the local velocity vectors constitute a pattern of coherent image motion called an optic flow field. The direction and magnitude of the velocity vectors depend on the instantaneous self-motion of the optical system which may be decomposed into its translation and rotation components. The magnitude of translation-induced contribution to a given velocity vector depends on the distance between the optical system and objects within the visual field, while the rotation-induced contribution is distance invariant. Given its properties, optic flow contains a...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Adelson EH, Bergen JR (1985) Spatiotemporal energy models for the perception of motion. J Opt Soc Am 2:284–299

    Article  CAS  Google Scholar 

  • Angelaki DE, Cullen KE (2008) Vestibular system: the many facets of a multimodal sense. Annu Rev Neurosci 31:125–150

    Article  PubMed  CAS  Google Scholar 

  • Barron JL, Fleet DJ, Beauchemin SS (1994) Performance of optical flow techniques. Int J Comp Vis 12:43–77

    Article  Google Scholar 

  • Borst A, Egelhaaf M (1989) Principles of visual motion detection. Trends Neurosci 12:297–306

    Article  PubMed  CAS  Google Scholar 

  • Borst A, Egelhaaf M (1993) Detecting visual motion: theory and models. In: Miles FA, Wallman J (eds) Visual motion and its role in the stabilization of gaze, vol 5, Reviews of oculomotor research. Elsevier, Amsterdam/London/New York/Tokyo, pp 3–27

    Google Scholar 

  • Borst A, Euler T (2011) Seeing things in motion: models, circuits, and mechanisms. Neuron 71:974–994

    Article  PubMed  CAS  Google Scholar 

  • Borst A, Egelhaaf M, Haag J (1995) Mechanisms of dendritic integration underlying gain control in fly motion-sensitive interneurons. J Comput Neurosci 2:5–18

    Article  PubMed  CAS  Google Scholar 

  • Buchner E (1976) Elementary movement detectors in an insect visual-system. Biol Cybern 24:85–101

    Article  Google Scholar 

  • Buchner E (1984) Behavioural analysis of spatial vision in insects. In: Ali MA (ed) Photoreception and vision in invertebrates. Plenum Press, New York, pp 623–634

    Chapter  Google Scholar 

  • Buchner E, Buchner A (1984) Neuroanatomical mapping of visually induced nervous activity in insects by 3H-deoxyglucose. In: Ali MA (ed) Photoreception and vision in invertebrates. Plenum Press, New York, pp 561–621

    Chapter  Google Scholar 

  • Dahmen H, Franz MO, Krapp HG (2001) Extracting egomotion from optic flow: limits of accuracy and neural matched filters. In: Zanker MJ, Zeil J (eds) Motion vision. Computational, neural, and ecological constraints. Springer, Berlin/Heidelberg/New York/Tokyo, pp 143–168

    Google Scholar 

  • Duffy CJ, Wurtz RH (1991a) Sensitivity of MST neurons to optic flow stimuli. I. A continuum of response selectivity to large-field stimuli. J Neurophysiol 65:1329–1345

    PubMed  CAS  Google Scholar 

  • Duffy CJ, Wurtz RH (1991b) Sensitivity of MST neurons to optic flow stimuli. II. Mechanisms of response selectivity revealed by small-field stimuli. J Neurophysiol 65:1346–1359

    PubMed  CAS  Google Scholar 

  • Egelhaaf M (1985) On the neuronal basis of figure-ground discrimination by relative motion in the visual-system of the fly.2. Figure-detection cells, a new class of visual interneurones. Biol Cybern 52:195–209

    Article  Google Scholar 

  • Egelhaaf M, Kern R, Krapp HG, Kretzberg J, Kurtz R, Warzecha AK (2002) Neural encoding of behaviourally relevant visual-motion information in the fly. Trends Neurosci 25:96–102

    Article  PubMed  CAS  Google Scholar 

  • Elyada YM, Haag J, Borst A (2009) Different receptive fields in axons and dendrites underlie robust coding in motion-sensitive neurons. Nat Neurosci 12:327–332

    Article  PubMed  CAS  Google Scholar 

  • Franz MO, Krapp HG (2000) Wide-field, motion-sensitive neurons and matched filters for optic flow fields. Biol Cybern 83:185–197

    Article  PubMed  CAS  Google Scholar 

  • Gibson JJ (1950) The perception of the visual world. Houghton Mifflin, Boston

    Google Scholar 

  • Gibson JJ (1979) The ecological approach to visual perception. Houghton Mifflin, Boston

    Google Scholar 

  • Gronenberg W, Strausfeld NJ (1990) Descending neurons supplying the neck and flight motor of Diptera: physiological and anatomical characteristics. J Comp Neurol 302:973–991

    Article  PubMed  CAS  Google Scholar 

  • Gronenberg W, Milde JJ, Strausfeld NJ (1995) Oculomotor control in calliphorid flies: organization of descending neurons to neck motor neurons responding to visual stimuli. J Comp Neurol 361:267–284

    Article  PubMed  CAS  Google Scholar 

  • Haag J, Borst A (2004) Neural mechanism underlying complex receptive field properties of motion-sensitive interneurons. Nat Neurosci 7:628–634

    Article  PubMed  CAS  Google Scholar 

  • Haag J, Wertz A, Borst A (2007) Integration of lobula plate output signals by DNOVS1, an identified premotor descending neuron. J Neurosci 27:1992–2000

    Article  PubMed  CAS  Google Scholar 

  • Harris RA, O’Carroll DC, Laughlin SB (2000) Contrast gain reduction in fly motion adaptation. Neuron 28:595–606

    Article  PubMed  CAS  Google Scholar 

  • Hassenstein B, Reichardt W (1953) Der Schluss von Reiz-Reaktions-Funktionen auf System-Strukturen. Z Naturforsch B 8:518–524

    Google Scholar 

  • Hausen K (1982) Motion sensitive interneurons in the optomotor system of the fly.1. The horizontal cells – structure and signals. Biol Cybern 45:143–156

    Article  Google Scholar 

  • Hausen K (1984) The lobula-complex of the fly: Structure, function and significance in visual behaviour. In: Ali MA (ed) Photoreception and vision in invertebrates. Plenum Press, New York, pp 523–559

    Chapter  Google Scholar 

  • Hausen K (1993) Decoding of retinal image flow in insects. In: Miles FA, Walman J (eds) Visual motion and its role in the stabilization of gaze, vol 5, Reviews of oculomotor research. Elsevier, Amsterdam/London/New York/Tokyo, pp 203–235

    Google Scholar 

  • Hengstenberg R (1977) Spike responses of ‘non-spiking’ visual interneurone. Nature 270:338–340

    Article  PubMed  CAS  Google Scholar 

  • Hengstenberg R (1982) Common visual response properties of giant vertical cells in the lobula plate of the blowfly Calliphora. J Comp Physiol A 149:179–193

    Article  Google Scholar 

  • Hengstenberg R (1993) Multisensory control in insect oculomotor systems. In: Miles FA, Walman J (eds) Visual motion and its role in the stabilization of gaze, vol 5, Reviews of oculomotor research. Elsevier, Amsterdam/London/New York/Tokyo, pp 285–298

    Google Scholar 

  • Horn BKP, Schunck BG (1981) Determining optic flow. J Artif Intell 17:185–204

    Article  Google Scholar 

  • Huston SJ, Krapp HG (2008) Visuomotor transformation in the fly gaze stabilization system. PLoS Biol 6:1468–1478

    Article  CAS  Google Scholar 

  • Huston SJ, Krapp HG (2009) Nonlinear integration of visual and haltere inputs in fly neck motor neurons. J Neurosci 29:13097–13105

    Article  PubMed  CAS  Google Scholar 

  • Hyslop A, Krapp HG, Humbert JS (2010) Control theoretic interpretation of directional motion preferences in optic flow processing interneurons. Biol Cybern 103:353–364

    Article  PubMed  Google Scholar 

  • Karmeier K, Tabor R, Egelhaaf M, Krapp HG (2001) Early visual experience and the receptive-field organization of optic flow processing interneurones in the fly motion pathway. Vis Neurosci 18:1–8

    Article  PubMed  CAS  Google Scholar 

  • Koenderink JJ, van Doorn AJ (1975) Invariant properties of motion parallax field due to movement of rigid bodies relative to an observer. Opt Acta 22:773–791

    Article  Google Scholar 

  • Koenderink JJ, van Doorn AJ (1987) Facts on optic flow. Biol Cybern 56:247–254

    Article  PubMed  CAS  Google Scholar 

  • Krapp HG (2000) Neuronal matched filters for optic flow processing in flying insects. Int Rev Neurobiol 44:93–120

    Article  PubMed  CAS  Google Scholar 

  • Krapp HG (2010) Sensorimotor transformation: from visual responses to motor commands. Curr Biol 20:R236–R239

    Article  PubMed  CAS  Google Scholar 

  • Krapp HG (2014) Flies, optic flow, and multisensory stabilization reflexes. In: Bleckmann H, Coombs S, Mogdans J (eds) Flow sensing in air and water. Springer Heidelberg New York, Dondrecht, London pp 215–243

    Google Scholar 

  • Krapp HG, Hengstenberg R (1996) Estimation of self-motion by optic flow processing in single visual interneurons. Nature 384:463–466

    Article  PubMed  CAS  Google Scholar 

  • Krapp HG, Hengstenberg R (1997) A fast stimulus procedure to determine local receptive field properties of motion-sensitive visual interneurons. Vis Res 37:225–234

    Article  PubMed  CAS  Google Scholar 

  • Krapp HG, Wicklein M (2008) Central processing of visual information in insects. In: Basbaum AI, Kenako A, Shepherd GM, Westheimer G (eds) The senses: a comprehensive reference. Masland IR, Albright TD (eds) Vision I, vol 1. Academic, San Diego, pp 131–204

    Google Scholar 

  • Krapp HG, Hengstenberg B, Hengstenberg R (1998) Dendritic structure and receptive-field organization of optic flow processing interneurons in the fly. J Neurophysiol 79:1902–1917

    PubMed  CAS  Google Scholar 

  • Krapp HG, Taylor GK, Humbert JS (2012) The mode-sensing hypothesis: matching sensors, actuators and flight dynamics. In: Barth FG, Humphrey JAC, Srinivasan MV (eds) Frontiers in sensing – from biology to engineering. Springer, Wien, pp 101–114

    Chapter  Google Scholar 

  • Land MF, Nilsson DE (2012) Animal eyes. Oxford University Press, Oxford

    Book  Google Scholar 

  • Lappe M (2000) Neuronal processing of optic flow, vol 44, International review of neurobiology. Academic, San Diego

    Google Scholar 

  • Lindemann JP, Kern R, van Hateren JH, Ritter H, Egelhaaf M (2005) On the computations analyzing natural optic flow: quantitative model analysis of the blowfly motion vision pathway. J Neurosci 25:6435–6448

    Article  PubMed  CAS  Google Scholar 

  • Longden KD, Krapp HG (2009) State-dependent performance of optic-flow processing interneurons. J Neurophysiol 102:3606–3618

    Article  PubMed  Google Scholar 

  • Maddess T, Laughlin SB (1985) Adaptation of the motion-sensitive neuron H-1 is generated locally and governed by contrast frequency. Proc R Soc B 225:251–275

    Article  Google Scholar 

  • Maimon G, Straw AD, Dickinson MH (2010) Active flight increases the gain of visual motion processing in Drosophila. Nat Neurosci 13:393–399

    Article  PubMed  CAS  Google Scholar 

  • Nakayama K, Loomis JM (1974) Optical velocity patterns, velocity-sensitive neurons, and space perception: a hypothesis. Perception 3:63–80

    Article  PubMed  CAS  Google Scholar 

  • Petrowitz R, Dahmen H, Egelhaaf M, Krapp HG (2000) Arrangement of optical axes and the spatial resolution in the compound eye of the female blowfly. J Comp Physiol A 186:737–746

    Article  PubMed  CAS  Google Scholar 

  • Reichardt W (1961) Autocorrelation, a principle for the evaluation of sensory information by the central nervous system. In: Rosenblith WA (ed) Sensory communication. MIT Press, Cambridge, pp 303–317

    Google Scholar 

  • Reichardt W (1987) Evaluation of optical motion information by movement detectors. J Comp Physiol A 161:533–547

    Article  PubMed  CAS  Google Scholar 

  • Riehle A, Franceschini N (1984) Motion detection in flies: parametric control over ON-OFF pathways. Exp Brain Res 54:390–394

    Article  PubMed  CAS  Google Scholar 

  • Strausfeld NJ, Seyan HS (1985) Convergence of visual, haltere, and prosternal inputs at neck motor neurons of Calliphora erythrocephala. Cell Tissue Res 240:601–615

    Article  Google Scholar 

  • Strausfeld NJ, Seyan HS, Milde JJ (1987) The neck motor system of the fly Calliphora-Erythrocephala. 1. Muscles and motor neurons. J Comp Physiol A 160:205–224

    Article  Google Scholar 

  • Tanaka K, Fukada Y, Saito HA (1989) Underlying mechanisms of the response specificity of expansion/contraction and rotation cells in the dorsal part of the medial superior temporal area of the macaque monkey. J Neurophysiol 62:642–656

    PubMed  CAS  Google Scholar 

  • Tanaka K, Sugita Y, Moriya M, Saito HA (1993) Analysis of object motion in the ventral part of the medial superior temporal area of the macaque visual-cortex. J Neurophysiol 69:128–142

    PubMed  CAS  Google Scholar 

  • Taylor GK, Krapp HG (2007) Sensory systems and flight stability: What do insects measure and why? Adv Insect Physiol Insect Mech Control 34:231–316

    Article  Google Scholar 

  • Wylie DR, Frost BJ (1999) Responses of neurons in the nucleus of the basal optic root to translational and rotational flow fields. J Neurophysiol 81:267–276

    PubMed  CAS  Google Scholar 

  • Wylie DR, Bischof WF, Frost BJ (1998) Common reference frame for neural coding of translational and rotational optic flow. Nature 392:278–282

    Article  PubMed  CAS  Google Scholar 

Further Reading

  • Egelhaaf M, Borst A (1993) Movement detection in arthropods. In: Miles FA, Walman J (eds) Visual motion and its role in the stabilization of gaze, vol 5, Reviews of oculomotor research. Elsevier, Amsterdam/London/New York/Tokyo, pp 53–77

    Google Scholar 

  • Krapp HG (2009) Sensory integration: neuronal adaptations for robust visual self-motion estimation. Curr Biol 19:R413–R416

    Article  PubMed  CAS  Google Scholar 

  • Krapp HG, Hengstenberg R, Egelhaaf M (2001) Binocular contributions to optic flow processing in the fly visual system. J Neurophysiol 85:724–734

    PubMed  CAS  Google Scholar 

  • Parsons MM, Krapp HG, Laughlin SB (2010) Sensor fusion in identified visual interneurons. Curr Biol 20:624–628

    Article  PubMed  CAS  Google Scholar 

  • Schwyn D, Hernadez Heras FJ, Bolliger G, Parsons MM, Krapp HG, Tanaka RI (2011) Interplay between feedback and feed forward control in fly gaze stabilization. In: 18th World Congress of International Federation of Automated Control (IFAC), Milan, pp 9674–9679

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Holger G. Krapp .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Krapp, H.G. (2014). Optic Flow Processing. In: Jaeger, D., Jung, R. (eds) Encyclopedia of Computational Neuroscience. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7320-6_332-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7320-6_332-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-7320-6

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics