Skip to main content

Spectro-Temporal Receptive Fields

  • Living reference work entry
  • First Online:
Encyclopedia of Computational Neuroscience

Synonyms

Frequency tuning curves; Iso-intensity response curves; Spectrotemporal response fields

Definition

The spectrotemporal response field (STRF) of an auditory neuron is a time-frequency measure of the dynamic responses of an auditory neuron to impulsive energy delivered at various frequencies. As such, it gives simultaneously two types of information about the neuron. The first is its frequency tuning, or more specifically which frequencies excite the cell best and which inhibit it. The other is the nature of its temporal response, i.e., whether it is sustained in time or is rapidly adapting. This measure is linear and takes the stimulus spectrogram as its input and hence is often found to be useful in predicting responses of a neuron to unseen stimuli.

Detailed Description

The Value of the STRF

A key requirement in the study of sensory nervous systems is the ability to characterize effectively neuronal response selectivity. In the visual system, striving for this objective...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Aertsen AMHJ, Johannesma PIM (1981) The spectro-temporal receptive field. Biological cybernetics 42(2):133–143

    Google Scholar 

  • Ahrens MB, Linden JF, Sahani M (2008) Nonlinearities and contextual influences in auditory cortical responses modeled with multilinear spectrotemporal methods. J Neurosci 28:1929–1942

    Article  CAS  PubMed  Google Scholar 

  • Arun P, Sripati AP, Yoshioka T, Denchev P, Hsiao SS, Johnson KO (2006) Spatiotemporal receptive fields of peripheral afferents and cortical area 3b and 1 neurons in the primate somatosensory system. J Neurosci 26:2101–2114

    Article  Google Scholar 

  • Atencio CA, Sharpee TO, Schreiner CE (2008) Cooperative nonlinearities in auditory cortical neurons. Neuron 58(6):956–966

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chi T, Ru P, Shamma S (2006) Multiresolution spectrotemporal analysis of complex sounds. J Acoust Soc Am 118:887

    Article  Google Scholar 

  • Christianson GB, Sahani M, Linden JF (2008) The consequences of response nonlinearities for interpretation of spectrotemporal receptive fields. J Neurosci 28:446–455

    Article  CAS  PubMed  Google Scholar 

  • David SV, Hayden BY, Gallant JL (2006) Spectral receptive field properties explain shape selectivity in area V4. J Neurophysiol 96:3492–3505

    Article  PubMed  Google Scholar 

  • David S, Mesgarani N, Shamma S (2007) Estimating sparse spectro-temporal receptive fields with natural stimuli. Netw Comput Neural Syst 18(3):191–212

    Article  Google Scholar 

  • David S, Mesgarani N, Fritz JB, Shamma S (2009) Rapid synaptic depression explains nonlinear modulation of spectro-temporal tuning in primary auditory cortex by natural stimul. J Neurosci 29:3374–3386

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • De Boer E (1967) Correlation studies applied to the frequency resolution of the cochlea. J Audit Res 7:209–217

    Google Scholar 

  • de Boer E, de Jongh HR (1978) On cochlear encoding: potentialities and limitations of the reverse-correlation technique. J Acoust Soc Am 63:115–135

    Article  PubMed  Google Scholar 

  • De Valois RL, De Valois KK (1988) Spatial vision. Oxford University Press, New York

    Google Scholar 

  • DeAngelis GC, Ohzawa I, Freeman RD (1995) Receptive field dynamics in central visual pathways. Trends Neurosci 18:451–458

    Article  CAS  PubMed  Google Scholar 

  • Ding N, Simon JZ (2012) Emergence of neural encoding of auditory objects while listening to competing speakers. Proc Natl Acad Sci U S A 109(29):11854–11859

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Elhilali M, Shamma S (2008) The cocktail party problem – with a cortical twist. J Acoust Soc Am 124(6):3751–3771

    Article  PubMed Central  PubMed  Google Scholar 

  • Fritz J, Shamma S, Elhiliali M, Klein D (2003) Rapid task-dependent plasticity of spectrotemporal receptive fields in primary auditory cortex.” Nat Neurosci 6(11):1216–1223

    Article  CAS  PubMed  Google Scholar 

  • Fritz J, Shamma S, Elhiliali M (2005a) Differential dynamic plasticity of A1 receptive fields during multiple spectral tasks. J Neurosci 25:7623–7635

    Article  CAS  PubMed  Google Scholar 

  • Fritz J, Shamma S, Elhiliali M (2005b) Active listening: task-dependent plasticity of receptive fields in primary auditory cortex. Hear Res 206:159–176

    Article  PubMed  Google Scholar 

  • Gosselin F, Schyns P (2002) A new framework for visual categorization. Trends Cog Neurosci 6:70–76

    Article  Google Scholar 

  • Hochstein S, Shapley RM (1976) Linear and nonlinear spatial subunits in Y cat retinal ganglion cells. J Physiol 262(2):265–284

    CAS  PubMed Central  PubMed  Google Scholar 

  • Klein DJ, Simon JZ, Depireux DA, Shamma SA (2006) Stimulus-invariant processing and spectrotemporal reverse-correlation in primary auditory cortex. J Comput Neurosci 20:111–136

    Article  PubMed  Google Scholar 

  • Massgarani N, Slaney M, Shamma S (2005) Content-based audio classification based on multiscale spectro-temporal features. IEEE Trans Audio Speech 14(3):920–930

    Article  Google Scholar 

  • Mesgarani N, Chang EF (2012) Selective cortical representation of attended speaker in multi-talker speech perception. Nature 485(7397):233–236

    Article  CAS  PubMed  Google Scholar 

  • Mesgarani N, David S, Fritz JB, Shamma SA (2008) Phoneme representation and classification in primary auditory cortex. J Acoust Soc Am 123:2433

    Article  Google Scholar 

  • Mesgarani N, David S, Shamma S (2009) Influence of context and behavior on the population code in primary auditory cortex. J Neurophysiol 102:3329–3339

    Article  PubMed Central  PubMed  Google Scholar 

  • Nagel KI, Doupe AJ (2008) Organizing principles of spectro-temporal encoding in the avian primary auditory area field L. Neuron 58(6):938–955

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Patil K, Pressnitzer D, Shamma S, Elhilali M (2012) Music in our ears: the biological bases of musical timbre perception. PLoS computational biology 8(11):e1002759

    Google Scholar 

  • Power AJ, Reilly RB, Lalor EC (2011) Comparing linear and quadratic models of the human auditory system using EEG. Conf Proc IEEE Eng Med Biol Soc 4:4171–4174

    Google Scholar 

  • Schinkel-Bielefeld N, David S, Shamma S, Butts D (2012) Inferring the roles of inhibition in auditory processing of complex natural stimuli. J Neurophysiol 107(12):3296–3307

    Article  PubMed Central  PubMed  Google Scholar 

  • Shamma S, Versnel H, Kowalski N (1995) Ripple analysis in the ferret primary auditory cortex. I. Response characteristics of single units to sinusoidally rippled spectra. J Audit Neurosci 1:233–254

    Google Scholar 

  • Theunissen FE, Sen K, Doupe AJ (2000) Spectral-temporal receptive fields of nonlinear auditory neurons obtained using natural sounds. J Neurosci 20:2315–2331

    CAS  PubMed  Google Scholar 

  • Zatorre R, Belin P (2001) Spectral and temporal processing in human auditory cortex. Cereb Cortex 11(10):946–953

    Article  CAS  PubMed  Google Scholar 

Further Readings

  • Fritz JB, Elhilali M, Shamma S (2007) Adaptive changes in cortical receptive fields induced by attention to complex sounds. J Neurophysiol 98:2337–2346

    Article  PubMed  Google Scholar 

  • Moller AR (1973) Statistical evaluation of the dynamic properties of cochlear nucleus units using stimuli modulated with pseudorandom noise. Brain Res 57:443–456

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shihab Shamma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this entry

Cite this entry

Shamma, S. (2013). Spectro-Temporal Receptive Fields. In: Jaeger, D., Jung, R. (eds) Encyclopedia of Computational Neuroscience. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7320-6_437-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7320-6_437-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-7320-6

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics