Skip to main content

Computational Modeling of Olfactory Behavior

  • Living reference work entry
  • Latest version View entry history
  • First Online:
Encyclopedia of Computational Neuroscience

Definition

Computational modeling is an essential tool for developing an understanding of how nervous systems compute. This is particularly so for questions that span levels of analysis, attempting to integrate cellular, neuromodulatory, and electrophysiological data with behavioral performance. In neuroscience, computational techniques are used to study the mechanisms underlying neuronal or network responses to simple and complex inputs, analyze interactions among the parameters governing the properties of a neuron or network, and determine the coordinated mechanisms that underlie experimentally observed rich phenomena such as coherent oscillations or synaptic plasticity. In particular, computational modeling has been successful in associating neural activity with behavioral function, proposing neurophysiological mechanisms for observed behavioral capabilities, and generating novel, testable hypotheses. In our lab, computational models of behavioral phenomena have enabled us to...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Banerjee A, Marbach F, Anselmi F, Koh MS, Davis MB, Garcia da Silva P, Delevich K, Oyibo HK, Gupta P, Li B, Albeanu DF (2015) An interglomerular circuit gates glomerular output and implements gain control in the mouse olfactory bulb. Neuron 87:193–207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhagavan S, Smith BH (1997) Olfactory conditioning in the honey bee, Apis mellifera: effects of odor intensity. Physiol Behav 61:107–117

    Article  CAS  PubMed  Google Scholar 

  • Castillo PE, Carleton A, Vincent JD, Lledo PM (1999) Multiple and opposing roles of cholinergic transmission in the main olfactory bulb. J Neurosci 19:9180–9191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chaudhury D, Escanilla O, Linster C (2009) Bulbar acetylcholine enhances neural and perceptual odor discrimination. J Neurosci 29:52–60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cleland TA, Linster C (1999) Concentration tuning mediated by spare receptor capacity in olfactory sensory neurons: a theoretical study. Neural Comput 11:1673–1690

    Article  CAS  PubMed  Google Scholar 

  • Cleland TA, Linster C (2002) How synchronization properties among second-order sensory neurons can mediate stimulus salience. Behav Neurosci 116:212–221

    Article  PubMed  Google Scholar 

  • Cleland TA, Sethupathy P (2006) Non-topographical contrast enhancement in the olfactory bulb. BMC Neurosci 7:7

    Article  PubMed  PubMed Central  Google Scholar 

  • Cleland TA, Morse A, Yue EL, Linster C (2002) Behavioral models of odor similarity. Behav Neurosci 116:222–231

    Article  PubMed  Google Scholar 

  • Cleland TA, Johnson BA, Leon M, Linster C (2007) Relational representation in the olfactory system. Proc Natl Acad Sci U S A 104:1953–1958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cleland TA, Chen SY, Hozer KW, Ukatu HN, Wong KJ, Zheng F (2012) Sequential mechanisms underlying concentration invariance in biological olfaction. Front Neuroeng 4:21

    Article  PubMed  PubMed Central  Google Scholar 

  • Cleland TA, Linster C (2012) On-center/inhibitory-surround decorrelation via intraglomerular inhibition in the olfactory bulb glomerular layer. Front Integr Neurosci 6:5. https://doi.org/10.3389/fnint.2012.00005

  • David F, Linster C, Cleland TA (2008) Lateral dendritic shunt inhibition can regularize mitral cell spike patterning. J Comput Neurosci 25:25–38

    Article  PubMed  Google Scholar 

  • de Almeida L, Idiart M, Linster C (2013) A model of cholinergic modulation in olfactory bulb and piriform cortex. J Neurophysiol 109:1360–1377

    Article  PubMed  Google Scholar 

  • de Almeida L, Reiner SJ, Ennis M, Linster C (2015) Computational modeling suggests distinct, location-specific function of norepinephrine in olfactory bulb and piriform cortex. Front Comput Neurosci 9:73

    Article  PubMed  PubMed Central  Google Scholar 

  • de Almeida L, Idiart M, Dean O, Devore S, Smith DM, Linster C (2016) Internal cholinergic regulation of learning and recall in a model of olfactory processing. Front Cell Neurosci 10:256

    PubMed  PubMed Central  Google Scholar 

  • Devore S, Linster C (2012) Noradrenergic and cholinergic modulation of olfactory bulb sensory processing. Front Behav Neurosci 6:52

    CAS  PubMed  PubMed Central  Google Scholar 

  • Devore S, Manella LC, Linster C (2012) Blocking muscarinic receptors in the olfactory bulb impairs performance on an olfactory short-term memory task. Front Behav Neurosci 6:59

    CAS  PubMed  PubMed Central  Google Scholar 

  • Devore S, de Almeida L, Linster C (2014) Distinct roles of bulbar muscarinic and nicotinic receptors in olfactory discrimination learning. J Neurosci 34:11244–11260

    Article  PubMed  PubMed Central  Google Scholar 

  • Escanilla O, Yuhas C, Marzan D, Linster C (2009) Dopaminergic modulation of olfactory bulb processing affects odor discrimination learning in rats. Behav Neurosci 123:828–833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao Y, Strowbridge BW (2009) Long-term plasticity of excitatory inputs to granule cells in the rat olfactory bulb. Nat Neurosci 12:731–733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harrison TA, Scott JW (1986) Olfactory bulb responses to odor stimulation: analysis of response pattern and intensity relationships. J Neurophysiol 56:1571–1589

    Article  CAS  PubMed  Google Scholar 

  • Hasselmo ME, Linster C, Patil M, Ma D, Cekic M (1997) Noradrenergic suppression of synaptic transmission may influence cortical signal-to-noise ratio. J Neurophysiol 77:3326–3339

    Article  CAS  PubMed  Google Scholar 

  • Johnson BA, Leon M (2000) Modular representations of odorants in the glomerular layer of the rat olfactory bulb and the effects of stimulus concentration. J Comp Neurol 422:496–509

    Article  CAS  PubMed  Google Scholar 

  • Johnson BA, Woo CC, Hingco EE, Pham KL, Leon M (1999) Multidimensional chemotopic responses to n-aliphatic acid odorants in the rat olfactory bulb. J Comp Neurol 409:529–548

    Article  CAS  PubMed  Google Scholar 

  • Kiyokage E, Pan YZ, Shao Z, Kobayashi K, Szabo G, Yanagawa Y, Obata K, Okano H, Toida K, Puche AC, Shipley MT (2010) Molecular identity of periglomerular and short axon cells. J Neurosci 30:1185–1196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li G, Cleland TA (2013) A two-layer biophysical model of cholinergic neuromodulation in olfactory bulb. J Neurosci 33:3037–3058

    Article  PubMed  PubMed Central  Google Scholar 

  • Li G, Cleland TA (2017) A coupled-oscillator model of olfactory bulb gamma oscillations. PLoS Comput Biol 13:e1005760

    Article  PubMed  PubMed Central  Google Scholar 

  • Li G, Linster C, Cleland TA (2015) Functional differentiation of cholinergic and noradrenergic modulation in a biophysical model of olfactory bulb granule cells. J Neurophysiol 114:3177–3200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Linster C, Kerszberg M, Masson C (1994) How neurons may compute: the case of insect sexual pheromone discrimination. J Comput Neurosci 1(3):231–238

    Article  CAS  PubMed  Google Scholar 

  • Linster C, Cleland TA (2001) How spike synchronization among olfactory neurons can contribute to sensory discrimination. J Comput Neurosci 10:187–193

    Article  CAS  PubMed  Google Scholar 

  • Linster C, Cleland TA (2002) Cholinergic modulation of sensory representations in the olfactory bulb. Neural Netw 15:709–717

    Article  PubMed  Google Scholar 

  • Linster C, Cleland TA (2004) Configurational and elemental odor mixture perception can arise from local inhibition. J Comput Neurosci 16:39–47

    Article  PubMed  Google Scholar 

  • Linster C, Cleland TA (2010) Decorrelation of odor representations via spike timing-dependent plasticity. Front Comput Neurosci 4:157

    PubMed  PubMed Central  Google Scholar 

  • Linster C, Gervais R (1996) Investigation of the role of interneurons and their modulation by centrifugal fibers in a neural model of the olfactory bulb. J Comput Neurosci 3:225–246

    Article  CAS  PubMed  Google Scholar 

  • Linster C, Hasselmo M (1997) Modulation of inhibition in a model of olfactory bulb reduces overlap in the neural representation of olfactory stimuli. Behav Brain Res 84:117–127

    Article  CAS  PubMed  Google Scholar 

  • Linster C, Johnson BA, Yue E, Morse A, Xu Z, Hingco EE, Choi Y, Choi M, Messiha A, Leon M (2001) Perceptual correlates of neural representations evoked by odorant enantiomers. J Neurosci 21:9837–9843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Linster C, Maloney M, Patil M, Hasselmo ME (2003) Enhanced cholinergic suppression of previously strengthened synapses enables the formation of self-organized representations in olfactory cortex. Neurobiol Learn Mem 80:302–314

    Article  CAS  PubMed  Google Scholar 

  • Linster C, Henry L, Kadohisa M, Wilson DA (2007) Synaptic adaptation and odor-background segmentation. Neurobiol Learn Mem 87:352–360

    Article  PubMed  Google Scholar 

  • Linster C, Menon AV, Singh CY, Wilson DA (2009) Odor-specific habituation arises from interaction of afferent synaptic adaptation and intrinsic synaptic potentiation in olfactory cortex. Learn Mem 16:452–459

    Article  PubMed  PubMed Central  Google Scholar 

  • Linster C, Nai Q, Ennis M (2011) Nonlinear effects of noradrenergic modulation of olfactory bulb function in adult rodents. J Neurophysiol 105:1432–1443

    Article  PubMed  PubMed Central  Google Scholar 

  • Mandairon N, Ferretti CJ, Stack CM, Rubin DB, Cleland TA, Linster C (2006a) Cholinergic modulation in the olfactory bulb influences spontaneous olfactory discrimination in adult rats. Eur J Neurosci 24:3234–3244

    Article  PubMed  Google Scholar 

  • Mandairon N, Stack C, Kiselycznyk C, Linster C (2006b) Broad activation of the olfactory bulb produces long-lasting changes in odor perception. Proc Natl Acad Sci U S A 103:13543–13548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mandairon N, Kermen F, Charpentier C, Sacquet J, Linster C, Didier A (2014) Context-driven activation of odor representations in the absence of olfactory stimuli in the olfactory bulb and piriform cortex. Front Behav Neurosci 8:138

    Article  PubMed  PubMed Central  Google Scholar 

  • Marr D (1982) Vision: a computational approach. Freeman & Co, San Francisco

    Google Scholar 

  • McIntyre ABR, Cleland TA (2016) Biophysical constraints on lateral inhibition in the olfactory bulb. J Neurophysiol 115(6):2937–2949. https://doi.org/10.1152/jn.00671.2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meister M, Bonhoeffer T (2001) Tuning and topography in an odor map on the rat olfactory bulb. J Neurosci 21:1351–1360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meredith M (1986) Patterned response to odor in mammalian olfactory bulb: the influence of intensity. J Neurophysiol 56:572–597

    Article  CAS  PubMed  Google Scholar 

  • Pressler RT, Inoue T, Strowbridge BW (2007) Muscarinic receptor activation modulates granule cell excitability and potentiates inhibition onto mitral cells in the rat olfactory bulb. J Neurosci 27:10969–10981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song S, Miller KD, Abbott LF (2000) Competitive Hebbian learning through spike-timing-dependent synaptic plasticity. Nat Neurosci 3:919–926

    Article  CAS  PubMed  Google Scholar 

  • Stopfer M, Bhagavan S, Smith BH, Laurent G (1997) Impaired odour discrimination on desynchronization of odour-encoding neural assemblies. Nature 390:70–74

    Article  CAS  PubMed  Google Scholar 

  • Stopfer M, Jayaraman V, Laurent G (2003) Intensity versus identity coding in an olfactory system. Neuron 39:991–1004

    Article  CAS  PubMed  Google Scholar 

  • Strauch M, Ditzen M, Galizia CG (2012) Keeping their distance? Odor response patterns along the concentration range. Front Syst Neurosci 6:71

    Article  PubMed  PubMed Central  Google Scholar 

  • Wei CJ, Linster C, Cleland TA (2006) Dopamine D(2) receptor activation modulates perceived odor intensity. Behav Neurosci 120(2):393–400

    Google Scholar 

  • Wellis DP, Scott JW, Harrison TA (1989) Discrimination among odorants by single neurons of the rat olfactory bulb. J Neurophysiol 61:1161–1177

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christiane Linster .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Linster, C., Cleland, T.A. (2019). Computational Modeling of Olfactory Behavior. In: Jaeger, D., Jung, R. (eds) Encyclopedia of Computational Neuroscience. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7320-6_607-2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7320-6_607-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-7320-6

  • Online ISBN: 978-1-4614-7320-6

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Computational Modeling of Olfactory Behavior
    Published:
    27 October 2018

    DOI: https://doi.org/10.1007/978-1-4614-7320-6_607-2

  2. Original

    Computational Modeling of Olfactory Behavior
    Published:
    26 March 2014

    DOI: https://doi.org/10.1007/978-1-4614-7320-6_607-1