Skip to main content

Local Field Potential, Relationship to BOLD Signal

  • Living reference work entry
  • First Online:
Encyclopedia of Computational Neuroscience

Definition

Blood oxygen level-dependent (BOLD) functional magnetic resonance imaging (fMRI) has rapidly become the leading research tool in cognitive neuroscience. Understanding how BOLD signal relates to activity of neural populations is crucial for constraining the interpretation of any fMRI in humans or animals. Here we review how the mean extracellular field potential (mEFP) recorded with extracellular electrodes samples different components of neural activity and how these components relate to the BOLD fMRI signal.

Detailed Description

In this entry, we first review the properties of the neurophysiological signals recorded with extracellular electrodes, and we then review how neurophysiological measures of neural activity related to the BOLD fMRI signal.

Extracellular Medium and Mean Extracellular Field Potential (mEFP)

The extracellular medium surrounding neurons is a volume conductor with a resistivity (specific impedance) that ranges from 200 to 400 Ωcm depending on neural site...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Adrian ED, Zotterman Y (1926) The impulses produced by sensory nerve-endings, part 2. The response of a single end-organ. J Physiol 61:151–171

    CAS  PubMed Central  PubMed  Google Scholar 

  • Aika Y, Ren JQ, Kosaka K, Kosaka T (1994) Quantitative analysis of GABA-like-immunoreactive and parvalbumin-containing neurons in the CA1 region of the rat hippocampus using a stereological method, the dissector. Exp Brain Res 99:267–276

    Article  CAS  PubMed  Google Scholar 

  • Ajmone-Marsan C (1965) Electrical activity of the brain: slow waves and neuronal activity. Isr J Med Sci 1:104–117

    Google Scholar 

  • Arezzo J, Legatt AD, Vaughan HGJ (1979) Topography and intracranial sources of somatosensory evoked potentials in the monkey. I. Early components. Electroencephalogr Clin Neurophysiol 46:155–172

    Article  CAS  PubMed  Google Scholar 

  • Basar E (1980) EEG-brain dynamics: relation between EEG and Brain evoked potentials. Elsevier/North Holland Biomedical Press, Amsterdam/New York/Oxford

    Google Scholar 

  • Belitski A, Gretton A, Magri C, Murayama Y, Montemurro MA, Logothetis NK, Panzeri S (2008) Low-frequency local field potentials and spikes in primary visual cortex convey independent visual information. J Neurosci 28:5696–5709

    Article  CAS  PubMed  Google Scholar 

  • Boss BD, Peterson GM, Cowan WM (1985) On the number of neurons in the dentate gyrus of the rat. Brain Res 338:144–150

    Article  CAS  PubMed  Google Scholar 

  • Braitenberg V, Schuez A (1998) Cortex: statistics and geometry of neuronal connectivity. Springer, Berlin

    Book  Google Scholar 

  • Buchwald JS, Grover FS (1970) Amplitudes of background fast activity characteristic of specific brain sites. J Neurophysiol 33:148–159

    CAS  PubMed  Google Scholar 

  • Buchwald JS, Hala ES, Schramm S (1965) A comparison of multi-unit activity and EEG activity recorded from the same brain site in chronic cats during behavioral conditioning. Nature 205:1012–1014

    Article  Google Scholar 

  • Buzsaki G, Bickford RG, Ponomareff G, Thal LJ, Mandel R, Gage FH (1988) Nucleus basalis and thalamic control of neocortical activity in the freely moving rat. J Neurosci 8:4007–4026

    CAS  PubMed  Google Scholar 

  • Chandler SH, Hsaio CF, Inoue T, Goldberg LJ (1994) Electrophysiological properties of guinea pig trigeminal motoneurons recorded in vitro. J Neurophysiol 71:129–145

    CAS  PubMed  Google Scholar 

  • Cragg BG (1975) The density of synapses and neurons in normal, mentally defective ageing human brains. Brain 98:81–90

    Article  CAS  PubMed  Google Scholar 

  • Einevoll GT, Kayser C, Logothetis NK, Panzeri S (2013) Modelling and analysis of local field potentials for studying the function of cortical circuits. Nat Rev Neurosci 14:770–785

    Article  CAS  PubMed  Google Scholar 

  • Elul R (1969) The physiological interpretation of amplitude histograms of the EEG. Electroencephalogr Clin Neurophysiol 27:703–704

    CAS  PubMed  Google Scholar 

  • Fries P, Nikolic D, Singer W (2007) The gamma cycle. Trends Neurosci 30:309–316

    Article  CAS  PubMed  Google Scholar 

  • Fromm GH, Bond HW (1967) The relationship between neuron activity and cortical steady potentials. Electroencephalogr Clin Neurophysiol 22:159–166

    Article  CAS  PubMed  Google Scholar 

  • Fulton BP, Walton K (1986) Electrophysiological properties of neonatal rat motoneurones studied in vitro. J Physiol 370:651–678

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gasser HS, Grundfest H (1939) Axon diameters in relation to the spike dimensions and the conduction velocity in mammalian A fibers. Am J Physiol 127:393–414

    Google Scholar 

  • Goense JBM, Logothetis NK (2008) Neurophysiology of the BOLD fMRI signal in awake monkeys. Curr Biol 18:631–640

    Article  CAS  PubMed  Google Scholar 

  • Granit R, Kernell D, Smith RS (1963) Delayed depolarization and the repetitive response to intracellular stimulation of mammalian motoneurones. J Physiol (Lond) 168:890–910

    CAS  Google Scholar 

  • Grover FS, Buchwald JS (1970) Correlation of cell size with amplitude of background fast activity in specific brain nuclei. J Neurophysiol 33:160–171

    CAS  PubMed  Google Scholar 

  • Gustafsson B (1984) Afterpotentials and transduction properties in different types of central neurones. Arch Ital Biol 122:17–30

    CAS  PubMed  Google Scholar 

  • Harada Y, Takahashi T (1983) The calcium component of the action potential in spinal motoneurones of the rat. J Physiol 335:89–100

    CAS  PubMed Central  PubMed  Google Scholar 

  • Henze DA, Borhegyi Z, Csicsvari J, Mamiya A, Harris KD, Buzsaki G (2000) Intracellular features predicted by extracellular recordings in the hippocampus in vivo. J Neurophysiol 84:390–400

    CAS  PubMed  Google Scholar 

  • Higashi H, Tanaka E, Inokuchi H, Nishi S (1993) Ionic mechanisms underlying the depolarizing and hyperpolarizing afterpotentials of single spike in guinea-pig cingulate cortical neurons. Neuroscience 55:129–138

    Article  CAS  PubMed  Google Scholar 

  • Huang CM, Buchwald JS (1977) Interpretation of the vertex short-latency acoustic response: a study of single neurons in the brain stem. Brain Res 137:291–303

    Article  CAS  PubMed  Google Scholar 

  • Humphrey DR, Corrie WS (1978) Properties of pyramidal tract neuron system within a functionally defined subregion of primate motor cortex. J Neurophysiol 41:216–243

    CAS  PubMed  Google Scholar 

  • Hunt C (1951) The reflex activity of mammalian small-nerve fibers. J Physiol (Lond) 115:456–469

    CAS  Google Scholar 

  • Jueptner M, Weiller C (1995) Review: does measurement of regional cerebral blood flow reflect synaptic activity? Implications for PET and fMRI. [60 refs]. Neuroimage 2:148–156

    Article  CAS  PubMed  Google Scholar 

  • Juergens E, Eckhorn R, Frien A, Woelbern T (1996) Restricted coupling range of fast oscillations in striate cortex of awake monkey. In: Brain and evolution. Thieme, Berlin/New York, p 418

    Google Scholar 

  • Juergens E, Guettler A, Eckhorn R (1999) Visual stimulation elicits locked and induced gamma oscillations in monkey intracortical- and EEG-potentials, but not in human EEG. Exp Brain Res 129:247–259

    Article  CAS  PubMed  Google Scholar 

  • Kamondi A, Acsady L, Wang XJ, Buzsaki G (1998) Theta oscillations in somata and dendrites of hippocampal pyramidal cells in vivo: activity-dependent phase-precession of action potentials. Hippocampus 8:244–261

    Article  CAS  PubMed  Google Scholar 

  • Kilner JM, Mattout J, Henson R, Friston KJ (2005) Hemodynamic correlates of EEG: a heuristic. Neuroimage 28:280–286

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi M, Inoue T, Matsuo R, Masuda Y, Hidaka O, Kang Y, Morimoto T (1997) Role of calcium conductances on spike afterpotentials in rat trigeminal motoneurons. J Neurophysiol 77:3273–3283

    CAS  PubMed  Google Scholar 

  • Legatt AD, Arezzo J, Vaughan HGJ (1980) Averaged multiple unit activity as an estimate of phasic changes in local neuronal activity: effects of volume-conducted potentials. J Neurosci Methods 2:203–217

    Article  CAS  PubMed  Google Scholar 

  • Linden H, Tetzlaff T, Potjans TC, Pettersen KH, Grun S, Diesmann M, Einevoll GT (2011) Modeling the spatial reach of the LFP. Neuron 72:859–872

    Article  CAS  PubMed  Google Scholar 

  • Lindsley DB, Wicke JD (1974) The electroencephalogram: autonomous electrical activity in man and animals. In: Thomson RF, Patterson MM (eds) Electroencephalography and human brain potentials. Academic, New York, pp 3–83

    Google Scholar 

  • Logothetis NK (2003) The underpinnings of the BOLD functional magnetic resonance imaging signal. J Neurosci 23:3963–3971

    CAS  PubMed  Google Scholar 

  • Logothetis NK, Wandell BA (2004) Interpreting the BOLD signal. Annu Rev Physiol 66:735–769

    Article  CAS  PubMed  Google Scholar 

  • Logothetis NK, Pauls JM, Augath MA, Trinath T, Oeltermann A (2001) Neurophysiological investigation of the basis of the fMRI signal. Nature 412:150–157

    Article  CAS  PubMed  Google Scholar 

  • Logothetis NK, Kayser C, Oeltermann A (2007) In vivo measurement of cortical impedance spectrum in monkeys: implications for signal propagation. Neuron 55:809–823

    Article  CAS  PubMed  Google Scholar 

  • Magri C, Mazzoni A, Logothetis NK, Panzeri S (2012a) Optimal band separation of extracellular field potentials. J Neurosci Methods 210:66–78

    Article  PubMed  Google Scholar 

  • Magri C, Schridde U, Murayama Y, Panzeri S, Logothetis NK (2012b) The amplitude and timing of the BOLD signal reflects the relationship between local field potential power at different frequencies. J Neurosci 32:1395–1407

    Article  CAS  PubMed  Google Scholar 

  • Mathiesen C, Caesar K, Akgoren N, Lauritzen M (1998) Modification of activity-dependent increases of cerebral blood flow by excitatory synaptic activity and spikes in rat cerebellar cortex. J Physiol 512(Pt 2):555–566

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mitzdorf U (1985) Current source-density method and application in cat cerebral cortex: investigation of evoked potentials and EEG phenomena. [324 refs]. Physiol Rev 65:37–100

    CAS  PubMed  Google Scholar 

  • Mitzdorf U (1987) Properties of the evoked potential generators: current source-density analysis of visually evoked potentials in the cat cortex. Int J Neurosci 33:33–59

    Article  CAS  PubMed  Google Scholar 

  • Nadasdy Z, Csicsvari J, Penttonen M, Hetke J, Wise K, Buzsaki G (1998) Extracellular recording and analysis of neuronal activity: from single cells to ensembles. In: Eichenbaum H, Davis JL (eds) Neuronal ensembles: strategies from recording and decoding. Wiley-Liss, New York, pp 17–55

    Google Scholar 

  • Nelson PG (1966) Interaction between spinal motoneurons of the cat. J Neurophysiol 29:275–287

    CAS  PubMed  Google Scholar 

  • Nicholson C, Llinas R (1971) Field potentials in the alligator cerebellum and theory of their relationship to Purkinje cell dendritic spikes. J Neurophysiol 34:509–531

    CAS  PubMed  Google Scholar 

  • O’Kusky J, Colonnier M (1982) A laminar analysis of the number of neurons, glia, and synapses in the adult cortex (area 17) of adult macaque monkeys. J Comp Neurol 210:278–290

    Article  PubMed  Google Scholar 

  • Pedley TA, Traub RD (1990) Physiological basis of the EEG. In: Daly DD, Pedley TA (eds) Current practice of clinical electroencephalography, vol 2. Raven, New York, pp 107–137

    Google Scholar 

  • Powell TP, Hendrickson AE (1981) Similarity in number of neurons through the depth of the cortex in the binocular and monocular parts of area 17 of the monkey. Brain Res 216:409–413

    Article  CAS  PubMed  Google Scholar 

  • Rall W (1962) Electrophysiology of a dendritic neuron. Biophys J 2:145–167

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rauch A, Rainer G, Logothetis NK (2008) The effect of a serotonin-induced dissociation between spiking and perisynaptic activity on BOLD functional MRI. Proc Natl Acad Sci U S A 105:6759–6764

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rockel AJ, Hiorns RW, Powell TP (1980) The basic uniformity in structure of the neocortex. Brain 103:221–244

    Article  CAS  PubMed  Google Scholar 

  • Shoham S, O’Connor DH, Segev R (2006) How silent is the brain: is there a “dark matter” problem in neuroscience? J Comp Physiol A-Neuroethol Sens Neural Behav Physiol 192:777–784

    Article  PubMed  Google Scholar 

  • Steriade M (1991) Alertness, quiet sleep, dreaming. In: Cerebral cortex, vol 9. Plenum Press, New York/London, pp 279–357

    Google Scholar 

  • Steriade M, Hobson J (1976) Neuronal activity during the sleep-waking cycle. Prog Neurobiol 6:155–376

    Article  CAS  PubMed  Google Scholar 

  • Steriade M, McCormick DA, Sejnowski TJ (1993) Thalamocortical oscillations in the sleeping and aroused brain. [70 refs]. Science 262:679–685

    Article  CAS  PubMed  Google Scholar 

  • Stone J (1973) Sampling properties of microelectrodes assessed in the cat’s retina. J Neurophysiol 36:1071–1079

    CAS  PubMed  Google Scholar 

  • Towe AL, Harding GW (1970) Extracellular microelectrode sampling bias. Exp Neurol 29:366–381

    Article  CAS  PubMed  Google Scholar 

  • Viswanathan A, Freeman RD (2007) Neurometabolic coupling in cerebral cortex reflects synaptic more than spiking activity. Nat Neurosci 10:1308–1312

    Article  CAS  PubMed  Google Scholar 

Further Reading

  • Buzsaki G, Anastassiou CA, Koch C (2012) The origin of extracellular fields and currents – EEG, ECoG, LFP and spikes. Nat Rev Neurosci 13(6):407–420. doi:10.1038/Nrn3241

    Article  CAS  PubMed  Google Scholar 

  • Einevoll GT, Kayser C, Logothetis NK, Panzeri S (2013) Modeling and analysis of local field potentials for studying the function of cortical circuits. Nat Rev Neurosci 14(11):770–785. doi:10.1038/nrn3618

    Article  CAS  PubMed  Google Scholar 

  • Logothetis NK (2008) What we can do and what we cannot do with fMRI. Nature 453(7197):869–878. doi:10.1038/nature06976

    Article  CAS  PubMed  Google Scholar 

  • Logothetis NK, Wandell BA (2004) Interpreting the BOLD signal. Annu Rev Physiol 66:735–769. doi:10.1146/annurev.physiol.66.082602.092845

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikos K. Logothetis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Logothetis, N.K., Panzeri, S. (2014). Local Field Potential, Relationship to BOLD Signal. In: Jaeger, D., Jung, R. (eds) Encyclopedia of Computational Neuroscience. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7320-6_726-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7320-6_726-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-7320-6

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics