Skip to main content

Plant Phenotypic Expression in Variable Environments

  • Living reference work entry
  • Latest version View entry history
  • First Online:
Ecology and the Environment

Introduction

Biologists have developed a small handful of unifying themes to explain the astonishing diversity of form and function exhibited by organisms. Phenotypic plasticity is one of those themes that continues to fascinate biologists from diverse backgrounds from ecologists and geneticists to developmental and evolutionary biologists. It is often a subject that students have difficulty grasping, for phenotypic plasticity is the result of the interplay between two distinct but interacting identities – the genetics of an organism and its environment – but is responsible for much of the intraspecific variation observed in ecological contexts. In this chapter, we will describe phenotypic plasticity, offer examples of how it can confer putative adaptive advantages for species in predictably variable environments, explore how phenotypic expression is facilitated and constrained by predetermined patterns of phenotypic expression throughout growth and development, and discuss...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Agrawal AA, Hastings AP, Johnson MTJ, Maron JL, Salminen J. Insect herbivores drive real-time ecological and evolutionary change in plant populations. Science. 2012;338:113–6.

    Article  CAS  PubMed  Google Scholar 

  • Bloom AJ, Chapin III FS, Mooney HA. Resource limitation in plants – an economic analogy. Annu Rev Ecol Evol Syst. 1985;16:363–92.

    Article  Google Scholar 

  • Bradshaw AD. Evolutionary significance of phenotypic plasticity in plants. Adv Genet. 1965;13:115–55.

    Article  Google Scholar 

  • Coleman JS, McConnaughay KDM. A non-functional interpretation of a classical optimal-partitioning example. Funct Ecol. 1995;9:951–954.

    Google Scholar 

  • Coleman JS, McConnaughay KDM, Ackerly DD. Interpreting phenotypic variation in plants. Trends Ecol Evol. 1994;9:187–91.

    Article  CAS  PubMed  Google Scholar 

  • de Kroon H, Heidrun H, Stuefer JF, van Groenendael JM. A modular concept of phenotypic plasticity in plants. New Phytol. 2005;166:73–82.

    Article  PubMed  Google Scholar 

  • DeWitt TJ, Scheiner SM. Phenotypic plasticity: functional and conceptual approaches. New York: Oxford University Press; 2004.

    Google Scholar 

  • DeWitt TJ, Sih A, Wilson DS. Costs and limits of phenotypic plasticity. Trends Ecol Evol. 1998;13:77–81.

    Article  CAS  PubMed  Google Scholar 

  • Diggle PK. The expression of andromonoecy in Solanum hirtum (Solanaceae): phenotypic plasticity and ontogenetic contingency. Am J Bot. 1994;81:1354–65.

    Article  Google Scholar 

  • Evans GC. The quantitative analysis of plant growth. Oxford: Blackwell Scientific; 1972.

    Google Scholar 

  • Fitter A, Hay R. Environmental physiology of plants. 3rd ed. London: Academic; 2002.

    Google Scholar 

  • Garland T, Kelly SA. Phenotypic plasticity and experimental evolution. J Exp Biol. 2006;209:2344–61.

    Article  PubMed  Google Scholar 

  • Gedroc JJ, McConnaughay KDM, Coleman JS. Plasticity in root shoot partitioning: optimal, ontogenetic, or both? Funct Ecol. 1996;10:44–50.

    Article  Google Scholar 

  • Geng Y, Pan X, Xu WZ, Li B, Chen J. Plasticity and ontogenetic drift of biomass allocation in response to above- and belowground resource availabilities in perennial herbs: a case study of Alternanthera philoxeroides. Ecol Res. 2007;22:255–60.

    Article  Google Scholar 

  • Ghalambor CK, McKay JK, Carroll SP, Reznick DN. Adaptive versus non-adaptive phenotypic plasticity and the potential for contemporary adaptation in new environments. Funct Ecol. 2007;21:394–407.

    Article  Google Scholar 

  • Hunt R. Basic growth analysis. London: Unwin Hyman Press; 1990.

    Book  Google Scholar 

  • McConnaughay KDM, Coleman JS. Biomass allocation in plants: ontogeny or optimality? A test along three resource gradients. Ecology. 1999;80:2581–93.

    Article  Google Scholar 

  • Mooney HA, Küppers M, Koch G, Gorham J, Chu C, Winner WE. Compensating effects to growth of carbon partitioning changes in response to SO2-induced photosynthetic reduction in radish. Oecologia. 1988;75:502–6.

    Article  Google Scholar 

  • Newman RA. Adaptive plasticity in amphibian metamorphosis. BioScience. 1992;42:671–8.

    Article  Google Scholar 

  • Niinemets U. Adaptive adjustments to light in foliage and whole-plant characteristics depend on relative age in the perennial herb Leontodon hispidus. New Phytol. 2004;162:683–96.

    Article  Google Scholar 

  • Pigliucci M. Phenotypic plasticity: beyond nature and nature. Baltimore: The John Hopkins University Press; 2001.

    Google Scholar 

  • Poorter H, Claudius ADM, van de Vijver CADM, Boot RGA. Growth and carbon economy of a fast-growing and a slow-growing grass species as a dependent on nitrate supply. Plant Soil. 1994;171:217–27.

    Article  Google Scholar 

  • Rice SA, Bazzaz FA. Quantification of plasticity of plant traits in response to light intensity: comparing phenotypes at a common weight. Oecologia. 1989;78:502–7.

    Article  Google Scholar 

  • Scheiner SM. Towards a more synthetic view of evolution. Am J Bot. 1999;86:145–8.

    Article  Google Scholar 

  • Schlichting CD. The evolution of phenotypic plasticity in plants. Annu Rev Ecol Evol Syst. 1986;17:667–93.

    Article  Google Scholar 

  • Siegal ML, Bergman A. Waddington’s canalization revisited: developmental stability and evolution. Proc Natl Acad Sci U S A. 2002;99:10528–32.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Silvertown J, Charlesworth D. Introduction to plant population biology. 4th ed. Oxford: Blackwell Science; 2001.

    Google Scholar 

  • Sultan SE. Evolutionary implications of phenotypic plasticity in plants. Evol Biol. 1987;21:127–78.

    Google Scholar 

  • Varshney CK, Garg JK, Lauenroth WK, Heitschmidt RK. Plant responses to sulfur dioxide pollution. Crit Rev Environ Control. 1979;9:27–50.

    Article  CAS  Google Scholar 

  • Via S. Adaptive phenotypic plasticity: target or by-product of selection in a variable environment? Am Nat. 1993;142:352–65.

    Article  CAS  PubMed  Google Scholar 

  • Vogel S. “Sun leaves” and “shade leaves”: differences in convective heat dissipation. Ecology. 1968;49:1203–4.

    Article  Google Scholar 

  • Waddington CH. Canalization of development and the inheritance of acquired characters. Nature. 1942;15:563–5.

    Article  Google Scholar 

  • Walbot V. Sources and consequences of phenotypic and genotypic plasticity in flowering plants. Trends Plant Sci. 1996;1:27–32.

    Article  Google Scholar 

  • Weiner J. Allocation, plasticity and allometry in plants. Perspect Plant Ecol Evol Syst. 2004;6:207–15.

    Article  Google Scholar 

  • West-Eberhard MJ. Phenotypic plasticity and the origins of diversity. Annu Rev Ecol Syst. 1989;20:249–78.

    Article  Google Scholar 

  • West-Eberhard MJ. Developmental plasticity and evolution. New York: Oxford University Press; 2003.

    Google Scholar 

  • White J. The plant as a metapopulation. Annu Rev Ecol Syst. 1979;10:109–45.

    Article  Google Scholar 

  • Whitman DW, Agrawal AA. What is phenotypic plasticity and why is it important? In: Whitman DW, Ananthakrishnan TN, editors. Phenotypic plasticity of insects: mechanisms and consequences. Enfield: Science Publishers; 2009. p. 1–63.

    Chapter  Google Scholar 

  • Wright SD, McConnaughay KDM. Interpreting phenotypic plasticity: the importance of ontogeny. Plant Species Biol. 2002;17:119–31.

    Article  Google Scholar 

  • Wu R, Ma C, Lou X, Casella G. Molecular dissection of allometry, ontogeny, and plasticity: a genomic view of developmental biology. BioScience. 2003;53:1041–7.

    Article  Google Scholar 

  • Yampolsky LY, Scheiner SR. Developmental noise, phenotypic plasticity, and allozyme heterozygosity in Daphnia. Evolution. 1994;5:1715–22.

    Article  Google Scholar 

Further Reading

  • Bernacchi CJ, Coleman JS, Bazzaz FA, McConnaughay KDM. Biomass allocation in old-field annual species grown in elevated CO2 environments: no evidence for optimal partitioning. Glob Change Biol. 2000;8:855–63.

    Article  Google Scholar 

  • Bernacchi CJ, Thompson JN, Coleman JS, McConnaughay KDM. Allometric analysis reveals relatively little variation in nitrogen versus biomass accrual in four plant species exposed to varying light, nutrients, water and CO2. Plant Cell Environ. 2007;30:1216–22.

    Article  CAS  PubMed  Google Scholar 

  • Caldwell MM, Pearcy RW. Exploitation of environmental heterogeneity by plants: ecophysiological processes above- and belowground. London: Academic; 1994.

    Google Scholar 

  • Chevin L, Lande R, Mace GM. Adaptation, plasticity, and extinction in a changing environment: towards a predictive theory. PLoS Biol. 2010;8:e1000357. doi:10.1371/journal.pbio.1000357.

    Article  PubMed Central  PubMed  Google Scholar 

  • Coen E. The art of genes: how organisms make themselves. New York: Oxford University Press; 1999.

    Google Scholar 

  • Diggle PK. A developmental morphologist’s perspective on plasticity. Evol Ecol. 2002;16:267–83.

    Article  Google Scholar 

  • Gianoli E, Valladares F. Studying phenotypic plasticity: the advantage of a broach approach. Biol J Linn Soc. 2012;105:1–7.

    Article  Google Scholar 

  • Hallgrímsson B, Hall BK. Variation: a central concept in biology. San Diego: Academic; 2005.

    Google Scholar 

  • Hodge A. The plastic plant: root responses to heterogeneous supplies of nutrients. New Phytol. 2004;162:9–24.

    Article  Google Scholar 

  • Huber H, Lukács S, Watson MA. Spatial structure of stoloniferous herbs: an interplay between structural and blue-print, ontogeny and phenotypic plasticity. Plant Ecol. 1999;141:107–15.

    Article  Google Scholar 

  • Leyser O, Day S. Mechanisms of plant development. Oxford: Blackwell; 2003.

    Google Scholar 

  • Matesanz S, Gianoli E, Valladares F. Global change and the evolution of phenotypic plasticity in plants. Ann NY Acad Sci. 2010;1206:35–55.

    Article  PubMed  Google Scholar 

  • McCarthy MC, Enquist BJ. Consistency between an allometric approach and optimal partitioning theory in global patterns of plant biomass allocation. Funct Ecol. 2007;21:713–20.

    Article  Google Scholar 

  • McConnaughay KDM, Coleman JS. Can plants track changes in nutrient availability via changes in biomass partitioning? Plant and Soil. 2008;202:201–9.

    Article  Google Scholar 

  • Miner BG, Sultan SE, Morgan SG, Padilla DK, Relyea RA. Ecological consequences of phenotypic plasticity. Trends Ecol Evol. 2005;20:685–92.

    Article  PubMed  Google Scholar 

  • Mooney HA, Winner WE, Pell EJ. Response of plant to multiple stresses. London: Academic; 1991.

    Google Scholar 

  • Moriuchi KS, Winn AA. Relationships among growth, development and plastic response to environmental quality in a perennial plant. New Phytol. 2005;166:149–58.

    Article  PubMed  Google Scholar 

  • Müller I, Schmid B, Weiner J. The effect of nutrient availability on biomass allocation patterns in 27 species of herbaceous plants. Perspect Plant Ecol Evol Syst. 2000;3:115–27.

    Article  Google Scholar 

  • Novoplansky A. Developmental plasticity in plants: implications of noncognitive behavior. Evol Ecol. 2002;16:177–88.

    Article  Google Scholar 

  • Pigliucci M. Evolution of phenotypic plasticity: where are we now? Trends Ecol Evol. 2005;20:481–5.

    Article  PubMed  Google Scholar 

  • Pigliucci M, Hayden K. Phenotypic plasticity is the major determinant of changes in phenotypic integration in Arabidopsis. New Phytol. 2001;152:419–30.

    Article  Google Scholar 

  • Pigliucci M, Murren CJ, Schlichting CD. Phenotypic plasticity and evolution by genetic assimilation. J Exp Biol. 2006;209:2362–7.

    Article  PubMed  Google Scholar 

  • Porter JR. A modular approach to plant growth analysis. I. Theory and principles. New Phytol. 1983;94:183–90.

    Article  Google Scholar 

  • Porter JR, Lawlor DW. Plant growth interactions with nutrition and environment. Cambridge: Cambridge University Press; 1991.

    Google Scholar 

  • Reekie EG, Bazzaz FA. Reproductive allocation in plants. London: Academic; 2005.

    Google Scholar 

  • Smith JM, Burian R, Kaufman S, Alberch P, Campbell J, Goodwin B, Lande R, Raup D, Wolpert L. Developmental constraints and evolution. Q Rev Biol. 1985;60:265–87.

    Article  Google Scholar 

  • Stanton ML, Roy BA, Thiede DA. Evolution in stressful environments I: phenotypic variability, phenotypic selection, and response to selection in five distinct environmental stress. Evolution. 2000;54:93–111.

    Article  CAS  PubMed  Google Scholar 

  • Steinger T, Roy BA, Stanton ML. Evolution in stressful environments II: adaptive value and costs of plasticity in response to low light in Sinapis arvensis. J Evol Biol. 2003;16:313–23.

    Article  CAS  PubMed  Google Scholar 

  • Sultan SE. Phenotypic plasticity for plant development, function and life history. Trends Plant Sci. 2000;5:537–42.

    Article  CAS  PubMed  Google Scholar 

  • Sultan SE, Bazzaz FA. Phenotypic plasticity in Polygonum persicaria. III. The evolution of ecological breadth for nutrient environment. Evolution. 1993;47:1050–71.

    Article  Google Scholar 

  • Valladares F, Sanchez-Gomez D, Zavala MA. Quantitative estimation of phenotypic plasticity: bridging the gap between evolutionary concept and its ecological applications. J Ecol. 2006;94:1103–16.

    Article  Google Scholar 

  • Valladares F, Gianoli E, Gómez JM. Ecological limits to plant phenotypic plasticity. New Phytol. 2007;176:749–63.

    Article  PubMed  Google Scholar 

  • Via S, Lande R. Genotype-environment interaction and the evolution of phenotypic plasticity. Evolution. 1985;39:505–22.

    Article  Google Scholar 

  • Via S, Gomulkiewicz R, De Jong G, Scheiner SM, Schlichting CD, Van Tienderen PH. Adaptive phenotypic plasticity: consensus and controversy. Trends Ecol Evol. 1995;10:212–7.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kelly McConnaughay .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this entry

Cite this entry

Pham, B., McConnaughay, K. (2015). Plant Phenotypic Expression in Variable Environments. In: Monson, R. (eds) Ecology and the Environment., vol 8. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7612-2_16-2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7612-2_16-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-7612-2

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Plant Phenotypic Expression in Variable Environments
    Published:
    13 October 2015

    DOI: https://doi.org/10.1007/978-1-4614-7612-2_16-2

  2. Original

    Environmental Selection and Convergent Evolution of Plant Phenotypes
    Published:
    25 February 2014

    DOI: https://doi.org/10.1007/978-1-4614-7612-2_16-1